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Abstract

We extend the canonical income process with persistent and tran-

sitory risk to cyclical shock distributions with left-skewness and excess

kurtosis. We estimate our income process by GMM for US household

data. We find countercyclical variance and procyclical skewness of per-

sistent shocks. All shock distributions are highly leptokurtic. The tax

and transfer system reduces dispersion and left-skewness. We then show

that in a standard incomplete-markets life-cycle model, first, higher-

order risk has sizable welfare implications, which depend on risk atti-

tudes; second, it matters quantitatively for the welfare costs of cyclical

idiosyncratic risk; third, it has non-trivial implications for self-insurance

against shocks.
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conference participants at various places for insightful comments. We thank Roćıo Madera for sharing her
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1 Introduction

The extent of idiosyncratic income risk matters for many macroeconomic ques-

tions. The first contribution of this paper is a novel parametric approach to

estimate idiosyncratic income risk and its systematic variation over the busi-

ness cycle within the canonical transitory-persistent decomposition (dating

back at least to Gottschalk and Moffitt 1994). In our estimation framework

we transparently identify skewness and kurtosis of both transitory and persis-

tent shocks, together with their variance. The second contribution is that we

systematically evaluate economic consequences of this higher-order risk in an

incomplete-markets model. We find that, first, higher-order idiosyncratic risk

has (economically relevant) implications for welfare. Second, cyclical higher-

order idiosyncratic risk matters for the welfare costs of business cycles. Third,

higher-order idiosyncratic risk matters for self-insurance through savings. Our

moment-based approach allows for a clean decomposition into the role of the

variance, skewness, and kurtosis of the shock distributions for these results.

In our analysis, we further transparently show which properties of preferences

are relevant to understand the documented economic consequences.

We provide guidance for the empirical and quantitative analysis by first

investigating a simple two-period model, in which agents face risky second

period income. We compare a version of the model with higher-order risk to

one without higher-order risk, but with the same dispersion of risky income.

We show analytically that, first, larger higher-order risk (in particular: left-

skewness) can have positive welfare implications (with log-utility). Second

and related, the reaction of precautionary savings to larger higher-order risk is

ambiguous. The utility and behavioral implications crucially depend on risk

attitudes of households—and on the magnitude of (higher-order) risk. These

results hold generally for shock distributions with the given moments.

Estimation of Higher-Order Risk. We characterize both transitory and

persistent shocks by their second to fourth central moments, which in the case

of the persistent shocks we allow to be state-contingent. We estimate these dis-
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tribution moments using the second to fourth cross-sectional central moments

and co-moments of incomes—while similar estimations traditionally are based

solely on the variance-covariance matrix. Importantly, we do not impose any

parametric distribution functions and estimate the moments of the shocks by

the Generalized Method of Moments (GMM). Identification follows from the

fact that the accumulated second to fourth central moments systematically

differ across cohorts if these cohorts experience different macroeconomic his-

tories—if the moments of shocks differ systematically over the business cycle.

This identification idea was introduced in Storesletten et al. (2004) for the

second moment and our extended estimator nests theirs as a special case. It

is important to note that we include the third and fourth central moments

in a way that does not affect the identification of the second moments or

the persistence of the shocks: we proceed ‘step-by-step’, and first identify the

second moments and persistence using only the variance-covariance moment

conditions. We then hold persistence and second moments fixed and use the

additional moment conditions only to identify the third and fourth central

moments of the shocks.

While Storesletten et al. (2004) analyze household-level income including

government transfers from the Panel Study of Income Dynamics (PSID) and

find countercyclical variance1 of persistent shocks, more recent evidence in

Guvenen et al. (2014) suggests that the focus on the variance of log income

changes alone misses the main characteristics of how individual risk varies with

the aggregate state of the economy. Their findings based on administrative

social security data (SSA) for individual males in the United States suggest

that individual downside risk is larger in a contraction, while upside risk is

smaller—this is reflected in a more pronounced left-skewness of the distribution

of earnings changes. Related, Busch et al. (2020) conduct a non-parametric

analysis of individual and household earnings dynamics in Germany, Sweden,

1This terminology has been introduced in the macroeconomic asset pricing literature, see
Mankiw (1986), Constantinides and Duffie (1996), and Storesletten et al. (2007). Build-
ing on the conceptual framework of Storesletten et al. (2004), Bayer and Juessen (2012)
focus on residual hourly wages (at the household level) and based on PSID data estimate
countercyclical dispersion of persistent shocks in the United States.
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France, and the US. They also find procyclical skewness of individual and

household-level annual earnings changes.

Our estimation approach allows us to draw a richer image of income dy-

namics over the business cycle within the transitory-persistent framework and

to thus bridge the previous analyses. Taking into account the second moment

alone might lead to wrong conclusions about the cyclical change of the dis-

tribution—if the change is asymmetric, which is captured by variation of the

third moment.2

We apply the estimation to survey data from the PSID, which allows us to

control for a rich set of household-level information and to take into account

several relevant transfer components. While being a smaller sample compared

to administrative SSA data, it allows us to analyze features of earnings dy-

namics at the household level. Busch et al. (2020) show that the cyclical

features of earnings changes at the individual level documented in Guvenen

et al. (2014) are well reflected in the PSID. Also, De Nardi et al. (2020)

show that many recently documented richer features of individual earnings

dynamics carry over to the PSID.3

We estimate two separate income processes at the household level: one for

joint labor income, and one for income after taxes and transfers. Comparison

of the corresponding estimates is informative about the success of the existing

tax and transfer scheme to dampen risk and its cyclicality. We find that both

transitory and persistent shocks to pre-government earnings feature strong left-

skewness, and that persistent shocks are significantly cyclical: in contractions,

their distribution is more dispersed and more left-skewed. We also find that the

existing tax and transfer system insures against both types of income shocks.

2As discussed in Busch et al. (2020), if the lower tail of a distribution expands by more
than the upper tail collapses, then the distribution is more dispersed (an increase in the
second moment) and more skewed to the left (a drop of the third moment).

3In follow-up work to Guvenen et al. (2014), Guvenen et al. (2021) document that, in
a given year, most individuals experience very small earnings changes, while some work-
ers experience very large changes of their earnings. This is summarized by a high kurto-
sis—relative to what the conventional assumption of log-normality implies. De Nardi et al.
(2020) present similar evidence for the Netherlands, and Druedahl and Munk-Nielsen (2018)
for Denmark.
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The distribution of both shocks to post-government income (after taxes and

transfers) is compressed relative to the respective shocks to pre-government

income, but persistent shocks remain significantly cyclical. The magnitude of

cyclicality of dispersion is in line with Storesletten et al. (2004). Finally, we

find strong excess kurtosis of transitory and persistent shocks. It is higher

for post- than for pre-government earnings suggesting that after redistribution

more mass is concentrated in the center relative to the tails of the distribution.

One related recent study of cyclical risk is Angelopoulos et al. (2019), who

adapt a version of the GMM estimator developed in the present paper and

document procyclical skewness of persistent shocks in Great Britain using

data from the British Household Panel Study.

Implications of Higher-Order Risk. We next assess whether the esti-

mated deviations from an income process with log-Normal shocks are eco-

nomically significant. To this end we set up a standard incomplete-markets

life-cycle model, in which households receive stochastic income following the

estimated process throughout their working life, after which they enter a re-

tirement phase and receive income through a pay-as-you-go pension system.

We focus on ex-post heterogeneity, and thus the only source of inequality in

the model is the risky idiosyncratic component of household income. The only

means of self-insurance against the income risk explicitly present in the model

is through private savings in a risk-free asset. We calibrate the model such

that households face the income process estimated on post government house-

hold income, reflecting the view that it represents the amount of risk remaining

after other channels of insurance against individual level risk—namely: within-

household insurance and government taxes and transfers (cf. Blundell et al.

2008). We normalize all shocks in levels, and in this sense the economy does

not feature aggregate risk. This reflects our interest in the role of cyclical

changes in idiosyncratic risk, and in the relevance of higher-order risk. Agents

have recursive preferences over consumption a la Epstein and Zin (1989, 1991),

and Weil (1989), which we choose because it allows us to separately control

the intertemporal elasticity of substitution and the coefficient of risk aver-
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sion. The latter also pins down the higher-order risk attitudes, and through

this is a crucial determinant of the behavioral reaction to higher-order risk.

To assess the implications of higher-order risk we compare model outcomes

under the calibration with the estimated income process and under an alter-

native calibration where the process features the same dispersion of shocks,

but with skewness and kurtosis of the Gaussian distribution (zero and three,

respectively).

Our analysis delivers three main findings. First, evaluated from an ex-

ante perspective higher-order risk has sizable negative welfare implications for

strong risk attitudes: the consumption equivalent variation (CEV) that makes

agents in the economy with log-Normal shocks indifferent to the economy with

higher-order risk ranges between −0.4% (for a coefficient of relative risk aver-

sion of 2) and −12.5% (relative risk aversion of 4). The dominant economic

mechanism driving this welfare result is an expected reallocation of consump-

tion over the life-cycle: when facing riskier income, risk-sensitive agents have

more precautionary savings, and thus less consumption at young ages. With

weak risk attitudes (specifically, for log utility), the welfare effect can be pos-

itive (CEV of 0.4%).4

Second, higher-order risk matters for the welfare costs of business cycles.

Since Lucas (1987, 2003) argued that the gains of smoothing cycles beyond

what the existing tax and transfer system does would be small, several studies

have explored the role of both ex-ante and ex-post heterogeneity, wih Imro-

horoglu (1989) being the first to emphasize the importance of idiosyncratic

risk and incomplete markets. In a model similar to hers, Storesletten et al.

(2001) allow for cyclical variance of persistent shocks as estimated in Storeslet-

ten et al. (2004). Following a similar strategy, we provide the first systematic

assessment of the welfare consequences of cyclical higher-order risk as cap-

tured in a continuous distribution function, and thus bridge this approach to

4It turns out that the mechanical relationship between the distribution of shocks in logs
and the distribution of shocks in levels is important for the results: introducing left-skewness
in logs (while holding the variance in logs constant) leads to a reduction of the variance in
levels. In other words, the introduction of third-order risk (left-skewness) mechanically
reduces second-order risk (variance) when characterizing the distribution in levels.
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papers that explore cyclical downside risk in the form of unemployment (e.g.,

Krusell and Smith 1999, Krusell et al. 2009, Krebs, 2003, 2007, and Beaudry

and Pages 2001). Under higher-order risk we find welfare costs (computed as

CEV making households in the non-cyclical economy indifferent to the cyclical

economy) which are 0.3%p (relative risk aversion of 2) to 6.4%p (relative risk

aversion of 4) larger than under log-Normal shocks.

Third, we document that higher-order risk crucially matters for the de-

gree of self-insurance against shocks. We employ a measure of self-insurance

introduced in the literature by Blundell et al. (2008), who suggest to evalu-

ate the degree of partial insurance against income shocks by estimating the

pass-through of the identified transitory and permanent shocks to consump-

tion changes. In the context of our model based analysis, we follow Kaplan

and Violante (2010), who study how much of the empirically estimated partial

insurance can be generated in a standard incomplete markets model. We find

that incorporating higher-order risk leads to weaker pass-through of income

shocks to consumption. However, this does not actually represent better in-

surance against negative shocks. In a scenario with higher-order risk agents

have more precautionary savings (relative to a scenario in which they face

log-Normal shocks), which implies that the consumption reaction to positive

transitory and persistent shocks is weaker. Negative shocks actually translate

stronger into negative consumption changes, because the higher savings do not

suffice to smooth out shocks which are more pronounced relative to Normal

shocks. Therefore, we caution against using only the insurance coefficient by

Blundell et al. (2008) for the analysis of the degree of partial insurance against

income risk.

Our paper is part of a growing literature that explicitly analyzes the impli-

cations of new insights on cyclical skewness of persistent earnings shocks for

macroeconomic questions. Golosov et al. (2016) allow for time-varying skew-

ness of idiosyncratic risk in a study of optimal fiscal policy, Catherine (2019)

analyzes the implications of procyclical skewness of idiosyncratic income risk

for the equity premium, and McKay (2017) links procyclical skewness to ag-

gregate consumption dynamics. Besides the particular economic outcomes of
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interest, our analysis differs by providing a transparent link between moments

of the shock distribution and those outcomes, emphasizing the relevant prop-

erties of preferences. Our analysis is also related to work on the implications of

rich earnings dynamics in general (without considering the cyclicality of risk).

De Nardi et al. (2020) feed an income process a la Arellano et al. (2017) into

an incomplete markets model and study the role of richer earnings dynamics

for consumption insurance and the welfare costs of idiosyncratic risk. Their

analysis focuses on non-linear features of the income process and corroborates

results from Karahan and Ozkan (2013) regarding the role of age-dependent

persistence and distributions of shocks. Civale et al. (2017) analyze implica-

tions of left-skewed and leptokurtic idiosyncratic shocks for the interest rate

and aggregate savings in an otherwise standard Aiyagari economy.

The remainder of the paper is structured as follows. Section 2 discusses the

implications of higher-order risk for welfare and savings in a simple two-period

model. Section 3 presents our empirical approach and discusses identification

of the income process. Section 4 presents the results of applying our approach

to US household earnings data from the PSID. Section 5 introduces the quan-

titative model to analyze the economic implications of higher-order income

risk, Section 6 discusses the quantitative results, and Section 7 concludes.

2 Higher-Order Risk in a Two-Period Model

2.1 Setup

Endowments. A household lives for two periods denoted by j ∈ {0, 1}. At

period 0 the household is endowed with an exogenous income of y0. Period 1

income is risky, y1 = exp(ε), for some random variable ε with distribution

function Ψ(ε), which features higher-order income risk. Households are born

with zero assets and, in the general formulation of the model, have access to a

risk-free savings technology with interest factor R = 1. Denoting by a1 savings
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in period 1, the budget constraints in the two periods are

a1 = y0 − c0, c1 ≤ a1 + y1.

Preferences. We consider additively separable preferences over consump-

tion cj in the two periods of life, j ∈ {0, 1}. The per period utility function

takes the standard iso-elastic power utility form u(cj) = 1
1−θc

1−θ
j , with concav-

ity parameter θ. Thus preferences are given by

V =

 1
1−θ

(
c1−θ

0 +
∫
c1−θ

1 dΨ(ε)
)

for θ 6= 1

ln (c0) +
∫

ln (c0) dΨ(ε) for θ = 1.

Notice that θ captures both risk attitudes as well as the inverse of the

inter-temporal substitution elasticity. In the quantitative life-cycle model we

use recursive preferences a la Epstein and Zin (1989, 1991), and Weil (1989)

to distinguish the two aspects of preferences. In Appendix A.5 we show that

the theoretical analysis presented in this section extends naturally to recur-

sive preferences, and that the risk attitudes are the relevant component of

preferences behind consumption reactions to higher-order income risk. In the

following, we thus interpret θ as representing risk attitudes when appropriate.

Since we assume an interest rate of zero and no discounting of second-period

utility, there is no life-cycle savings motive in this simple model.

2.2 Analysis

Hand-to-Mouth Consumers. We first analyze the role of higher-order risk

for hand-to-mouth consumers by shutting down access to the savings technol-

ogy through constraint a1 = 0.

Consider a fourth-order Taylor series approximation of the objective func-

tion around the mean of second period consumption, µc1 = E[c1] =
∫
c1dΨ(ε).

After some transformations, cf. Appendix A.1 and in line with, e.g., Eeckhoudt
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and Schlesinger (2006), we find that

U ≈ c1−θ
0

1− θ
+

(
1

1− θ
− θ

2
µc2 +

θ(1 + θ)

6
µc3 −

θ(1 + θ)(2 + θ)

24
µc4

)
, (1)

where we impose the restriction µc1 = 1 for expositional reasons (which is

irrelevant for the results pertaining to second- to fourth-order risk discussed

here). Note that under the assumption of the binding budget constraint,the

central moments5 of the level of consumption µck, k = 1, . . . , 4 coincide with

the respective moments µ
exp(ε)
k , k = 1, . . . , 4, of second period income exp(ε).

We make the following observations using the expression in (1). First,

consider changing one of the central moments of the distribution while holding

the others constant. An increase of the variance, µc2, or of the fourth central

moment, µc4, or a reduction of the third central moment, µc3, leads to expected

utility losses. Note that changing the third central moment while holding the

variance fixed implies changing the shape of the distribution as summarized

by the coefficient of skewness. Similarly, changing the fourth central moment

while holding variance fixed implies changing the relative size of the center

and tails of the distribution, as summarized by the coefficient of kurtosis. In

the remainder of the analysis, whenever we speak of an increase of risk, we

refer to a change of the distribution of shocks that entails at least one of

these changes (increasing second or fourth central moments, or decreasing the

third central moment). Second, the utility consequences of changes of risk are

governed by relative risk attitudes,6 which in case of the employed power utility

function are all pinned down by θ. Stronger relative risk aversion θ implies

stronger adverse effects of increasing variance; stronger relative prudence 1+θ

implies stronger adverse effects of increasing negative skewness; and stronger

relative temperance 2+θ implies stronger adverse effects of increasing kurtosis.

Importantly, the role of higher-order risk increases exponentially in θ: the

weight attributed to risk attitudes on the variance is θ, on the third moment

5The kth central moment of variable x is given by µxk = E (x− µx1)
k
.

6The relative risk attitude of order n is given by − un(c)
un−1(c)c, where un(c) denotes the nth

derivative of the per-period utility function u(c).
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is θ(1 + θ) and on the fourth moment is θ(1 + θ)(2 + θ). Third, for given θ the

relative importance of risk decreases in the order of risk, which is captured by

the weight terms of the Taylor approximation.

These observations play a crucial role for our quantitative evaluation. In

particular, while our estimates presented in Section 4.2 imply a pronounced

left-skewness and a strong excess kurtosis, which may lead to sizeable welfare

losses, the overall effect depends crucially on the utility weight of this risk,

and thus on the calibration of θ. Indeed, in the case of log utility (θ = 1)

the mean-preserving introduction of left-skewness generates welfare gains. We

formally derive this implication, which at first glance may appear counterin-

tuitive, in Appendix A.2. It turns out to be crucial that moments of shocks

in levels, exp(ε), rather than of shocks in logs, ε, are relevant for utility.

Precautionary Savings. We now assume that households have access to

a savings technology. Using the budget constraint in the utility function it is

straightforward to derive the Euler equation of the maximization problem as

(cf., e.g., Eeckhoudt and Schlesinger, 2008)

(y0 − a1)−θ = E
[
(exp(ε) + a1)−θ

]
≈ (1 + a1)−θ +

θ(1 + θ)

2
(1 + a1)−(2+θ) µ

exp(ε)
2 − θ(1 + θ)(2 + θ)

6
(1 + a1)−(3+θ) µ

exp(ε)
3

+
θ(1 + θ)(2 + θ)(3 + θ)

24
(1 + a1)−(4+θ) µ

exp(ε)
4 . (2)

Notice that the LHS is increasing, and the RHS is decreasing in a1 if µ
exp(ε)
3 is

small enough relative to µ
exp(ε)
2 and µ

exp(ε)
4 .7 Consider the effect of an increase

of risk of the income shock exp(ε) (through increasing the second or fourth

central moment, or reducing the third central moment). An increase of the

variance increases the RHS, scaled by the product of the measures of relative

prudence and relative risk aversion θ · (1 + θ). A reduction of the third central

moment increases the RHS, additionally scaled by the measure of relative

7The RHS is deacreasing in a1 iff µ
exp(ε)
3 ≤ 3

(3+θ) (1 + a1)µ
exp(ε)
2 + (4+θ)

4 (1 + a1)
−1
µ
exp(ε)
4 .
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temperance (2 + θ). An increase of the fourth central moment increases the

RHS, additionally scaled by the measure of relative edginess (3 + θ).8 Similar

to what we saw in equation (1), the second to fourth moments are scaled by

additional weight factors 1
2(1+a1)2+θ

, 1
6(1+a1)3+θ

, and 1
24(1+a1)4+θ

, respectively.

Therefore, an increase of risk for a given a1 increases the RHS, which is

offset by an increase of savings a1.9 This result is very intuitive: ordinary

and higher-order income risk increases precautionary savings, through which

households reduce the adverse utility consequences of risk. The intensity of

the behavioral reaction crucially depends on risk attitudes as governed by θ.

3 Income Process with Higher-Order Risk

3.1 The Income Process

Let log income of household i of age j in year t be

yijt = f (Xijt, Yt) + ỹijt, (3)

where f (Xijt, Yt) is the deterministic component of income, i.e., the part that

can be explained by observable individual and aggregate characteristics, Xijt

and Yt, respectively, and ỹijt is the residual part of income, which is assumed

to be orthogonal to f (Xijt, Yt). The deterministic component f (Xijt, Yt) is a

linear combination of a cubic in age j, fage(j), the log of household size, year

fixed effects, and an education premium fEP (t) for college education, which

we allow to vary over years t:

f (Xijt, Yt) = β0t + fage (j) + 1eit=cfEP (t) + βsize log (hhsizeijt) (4)

where fage (j) = βage1 j+βage2 j2+βage3 j3, fEP (t) = βEP0 +βEP1 t+βEP2 t2, and 1eit=c

is an indicator function that takes on value 1 for college-educated households.

8The term edginess was coined by Lajeri-Chaherli (2004).
9Formally, it is straightforward to show this by taking the total differential of (2), cf.

Appendix A.4.
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Residual income ỹijt is the main object of interest in the analysis. We

model ỹijt as the sum of three components: a persistent component zijt, an i.i.d.

transitory shock εijt, and an idiosyncratic fixed effect χi. The idiosyncratic

fixed effect is a shock drawn once upon entering the labor market from a

distribution which is the same for every cohort.10 The persistent component

is modeled as an AR(1) process with innovation ηijt:

ỹijt = χi + zijt + εijt, where εijt ∼
iid
Fε, χi ∼

iid
Fχ (5a)

zijt = ρzij−1t−1 + ηijt, where ηijt ∼
id
Fη (s (t)) , (5b)

where Fχ, Fε, and Fη (s (t)) denote the density functions of χ, εijt, and ηijt,

respectively. We allow the density function of the persistent shock to de-

pend on the aggregate state of the economy in period t, denoted by s(t).

This income process is exactly the canonical income process (e.g., Moffitt and

Gottschalk, 2011). Unlike the canonical case, we do not (implicitly) assume

that the shocks to the log income process are symmetric. Instead of only

focussing on the variance of the shocks, we are interested in estimating the

second to fourth central moments of the density functions, and denote those

by µx2 , µx3 , and µx4 , for x ∈ {χ, ε, η(s)}.11

As in Storesletten et al. (2004), the economy can be in one of two aggre-

gate states, which we denote by E (expansion) and C (contraction). Thus, the

central moments of the persistent shock µηk (s (t)) are equal to µη,Ek if s (t) = E

and equal to µη,Ck if s (t) = C, for k ∈ {2, 3, 4}. Both empirical evidence

(e.g., Blundell et al. 2008) and model-based analyses (e.g., Kaplan and Vi-

olante 2010) find that households can insure well against transitory shocks.

We therefore follow Storesletten et al. (2004) and only consider the cyclicality

of persistent income shocks, which have long-lasting effects in the context of a

10Thus, from the econometric perspective, we are estimating a random effects model.
11One potential disadvantage of using central moments to characterize the shocks in the

income process is that they are hard to interpret by themselves. However, in the samples we
use, the central moments of the cross-sectional income distribution are strongly correlated
with percentile-based counterparts to those moments. We are thus confident that the esti-
mated central moments—and the implied standardized moments skewness and kurtosis—do
capture the salient features of the distribution.
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life-cycle decision making problem. We still do capture skewness and kurtosis

of the (acyclical) transitory component and explore its quantitative role.

We assume that upon entering the labor market, in addition to drawing

the fixed effect χi, each worker draws the first realizations of transitory and

persistent shocks, εit and ηit, from the distributions Fε and Fη (s (t)), respec-

tively. Thus, the moments of the distribution of the persistent component for

the cohort entering in year t at age j = 0 are µk(zi0t) = µηk(s(t)).

3.2 GMM Approach to Estimation

We follow the common approach in the literature and estimate (3) and (5) in

two steps. In the first step, we estimate (3), which yields residuals ỹijt. In

the second step, we estimate the parameters of the stochastic process (5) by

fitting cross-sectional moments of the distribution of residual (log) income. As

is standard, the variance terms of all components of (5) can be identified by

the variance-covariance matrix. Similarly, the third and fourth central mo-

ments can be identified by third and fourth central moments and co-moments.

Let θ =
(
ρ, µχ2 , µ

ε
2, µ

η,E
2 , µη,C2 , µχ3 , µ

ε
3, µ

η,E
3 , µη,C3 , µχ4 , µ

ε
4, µ

η,E
4 , µη,C4

)
be the vector

of second-stage parameters, and let st summarize the history of aggregate

states up to year t.12 We denote central moments by µk (·) and co-moments

by µkl (·), where

µk (ỹijt; θ) = E
[
(ỹijt − E [ỹijt])

k |st
]

(6a)

µkl (ỹijt, ỹij+1t+1; θ) = E
[
(ỹijt − E [ỹijt])

k (ỹij+1t+1 − E [ỹij+1t+1])l |st
]
. (6b)

12Note that we need to condition only on st, not on st+1, because period t+ 1 shocks are
uncorrelated with all shocks accumulated up to period t.
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The imposed process implies the following moments of the distribution of

residual income at age j in year t:

µ2(ỹijt; θ) = µχ2 + µε2 + µ2(zijt) (7a)

µ11 (ỹijt, ỹij+1t+1; θ) = µχ2 + ρµ2(zijt) (7b)

µ3 (ỹijt; θ) = µχ3 + µε3 + µ3(zijt) (7c)

µ21 (ỹijt, ỹij+1t+1; θ) = µχ3 + ρµ3(zijt) (7d)

µ4 (ỹijt; θ) = µχ4 + µε4 + µ4(zijt) + 6 (µχ2µ
ε
2 + (µχ2 + µε2)µ2(zijt)) (7e)

µ31 (ỹijt, ỹij+1t+1; θ) = µχ4 + ρµ4(zijt) + 3 (µχ2µ
ε
2 + (µχ2 + ρ (µχ2 + µε2))µ2(zijt)) ,

(7f)

where µk(zijt), for k = 2, 3, 4 is shown in Appendix A.6.

A crucial implication of equations (7c) and (7e) is that the cross-sectional

distribution of ỹijt does not converge to a Normal distribution, as the third

and fourth central moments of the shocks accumulate over age. This allows

us to identify these higher-order moments of the shock distributions based on

cross-sectional moments as outlined below. Denote the empirical counterparts

of the moments by m2(·), m3(·), m4(·), m11(·), m21(·), and m31(·). This gives

the following set of moment conditions employed in the GMM estimation:

E
[
m2 (ỹijt)− µ2 (ỹijt; θ) |st

]
= 0 (8a)

E
[
m11 (ỹijt, ỹij+1t+1)− µ11 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (8b)

E
[
m3 (ỹijt)− µ3 (ỹijt; θ) |st

]
= 0 (8c)

E
[
m21 (ỹijt, ỹij+1t+1)− µ21 (ỹijt, ỹij+1t+1; θ) |st

]
= 0 (8d)

E
[
m4 (ỹijt)− µ4 (ỹijt; θ) |st

]
= 0 (8e)

E
[
m31 (ỹijt, ỹij+1t+1)− µ31 (ỹijt, ỹij+1t+1; θ) |st

]
= 0. (8f)

Huggett and Kaplan (2016) use a similar strategy based on second and third

central moments and co-moments, without resorting to pre-sample aggregate

information in the spirit of Storesletten et al. (2004) as we do. We use mo-

ment conditions (8a) and (8b) to estimate the variance parameters and the
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persistence ρ. Given an estimate for ρ, we then use moment conditions (8c)

and (8d) to estimate the third central moments. Likewise, given estimates

for ρ and the variance parameters, we use moment conditions (8e) and (8f) to

estimate the fourth central moments.

Identification. The use of cross-sectional moments for identification al-

lows us to exploit macroeconomic information that predates the micro panel,

thereby incorporating more business cycles in the analysis than covered by the

sample, as pointed out by Storesletten et al. (2004). Consider the persistent

component of the income process in equation (5b): the variance of the innova-

tions accumulate as a cohort ages, as can be seen from the theoretical moment

in equation (7a). If the innovation variance is higher in contractionary years,

then a cohort that lived through more contractions will have a higher income

variance at a given age than a cohort at the same age that lived through fewer

contractions, if the persistence is high.

Our extension of Storesletten et al. (2004) is based on the insight that

other central moments accumulate in a similar fashion, as seen in equations

(7c) and (7e). Consider the third central moment. If the probability of a large

negative income shock was higher (or that of a large positive shock lower)

during a contractionary period, then this would translate into the third central

moment of the shock being smaller (more negative) than in an expansion, i.e.,

µη,C3 < µη,E3 . For a given dispersion this implies a reduction of skewness (a

more left-skewed distribution). Comparing again two cohorts when they reach

a certain age, this would imply a more negative cross-sectional third central

moment for the cohort that worked through more contractions.

As seen in (7a), the sum (µχ2 + µε2) is identified as the intercept of the

variance profile over age. The same holds for (µχ3 + µε3) in (7c), which is

identified via the age profile of the third central moment. Considering the

sum in (7a), we see that the magnitude of the increase of the cross-sectional

variance over age identifies the variance of persistent shocks. The difference

between µη,C2 and µη,E2 is identified by the difference of the cross-sectional

variance of different cohorts of the same age. Likewise, the difference between
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µη,C3 and µη,E3 is identified by the difference of the cross-sectional third central

moment of different cohorts. Note that by restricting the transitory shocks to

not vary over the business cycle we do not bias the estimated cyclicality of

persistent shocks, which is identified via accumulated shock distributions.

Now consider the expressions for variance and covariance in equations (7a)

and (7b). The difference between the two expressions identifies µχ2 separately

from µε2. Likewise, the difference between the expressions for the third cen-

tral moment and co-moment, equations (7c) and (7d), identifies µχ3 separately

from µε3. Given ρ and the variance parameters µx2 for x ∈ {χ, ε, η(s)}, equa-

tions (7e) and (7f) identify the fourth central moments µx4 for x ∈ {χ, ε, η(s)}
in the same way as for the second and third central moments.

4 Estimation of the Income Process

4.1 Data and Sample Selection

We use data from the Panel Study of Income Dynamics (PSID), which inter-

views households in the United States annually from 1968 to 1997 and every

other year since then. The representative core sample consists of about 2,000

households in each wave, and we use data from 1977–2012.13 We estimate

the income process at the household level for both pre- and post-government

household income. De Nardi et al. (2020) show that at the individual level,

the PSID sample captures well the salient features of earnings dynamics doc-

umented in administrative social security data by Guvenen et al. (2021), who

also resort to it for the analysis of wage and hours dynamics. Similarly, Arel-

lano et al. (2017) estimate a rich earnings process using the PSID. Busch

et al. (2020) document that the cyclical changes of the distribution of an-

nual earnings changes in the PSID reflect the dynamics in social security data

documented by Guvenen et al. (2014).14

13We do not use earlier waves because of poor coverage of income transfers before the
1977 wave.

14Hryshko and Manovskii (2018) discuss some heterogeneity of income dynamics across
PSID samples.
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Household pre-government income is defined as labor income before taxes,

which we calculate as the sum of head and spouse annual labor income. Post-

government income is defined as household labor income plus transfers minus

taxes. As measure of labor income we use annual total labor income which

includes income from wages and salaries, bonuses, and the labor part of self-

employment income. We impute taxes using Taxsim, and add 50% of the

estimated payroll taxes to the sum of head and spouse labor incomes to obtain

pre-government income. We aggregate transfers to the household level and

include measures of unemployment benefits, workers’ compensation, combined

old-age social security and disability insurance (OASI), supplemental security

income, aid to families with dependent children (AFDC), food stamps, and

other welfare.

We deflate all nominal values with the annual CPI, and select households

if the household head is between 25 and 60 years of age. The minimum of

household pre- and post-government income needs to be above a constant

threshold, which is defined as the income from working 520 hours at half the

minimum wage. Central moments (especially of higher order) are imprecisely

estimated in small samples. We therefore estimate the moments for a given

year and age group based on a sample from a five-year window over age within

the year, which also smoothes the age profiles of these moments.

Defining Business Cycles. In order to implement the estimator we classify

years as contractions or expansions. We initiate our definition on NBER peaks

and trough data. The relevant time period is 1942–2012. Starting from the

dating of peaks and troughs, we classify a year as a contraction if (i) it com-

pletely is in a contractionary period, which is defined as the time from peak

to trough, (ii) if the peak is in the first half of the year and the contraction

continues into the next year, (iii) if a contraction started before the year and

the trough is in the second half of the year. Given the sluggish synchronization

of labor market outcomes with the macroeconomic indicators that the NBER

takes into account (cf. Guvenen et al. 2014, Huggett and Kaplan 2016), we

expand the dating based on mean earnings of males in the PSID. We clas-
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sify the following years as contractions: 1945, 1949, 1953, 1957, 1960, 1970,

1974, 1980–83, 1990–91, 2001–02, 2008–10. All years that are not classified as

contractions are classified as expansions.

4.2 Estimation Results: Cyclical Idiosyncratic Risk

Illustration of Identification. Before turning to the estimation, in Fig-

ure 1 we plot the cross-sectional second and third central moments of resid-

ual income (for post-government income) used in the estimation, i.e., each

marker denotes a moment for households of some age j in some year t, mk(ỹijt)

for k = 2, 3. The moments are plotted against the share of years classified as

contractions out of all years a cohort went through since age 25 once reaching

the given year. The pattern that emerges is that a higher share of contrac-

tionary years correlates positively with the cross-sectional second moments,

and correlates negatively with the cross-sectional third moments. These cor-

relations identify the cyclicality of the moments of the shocks in the esimated

income process.

Figure 1: Cross-Sectional Moments by Aggregate History

(a) Second Cross-Sectional Moment (b) Third Cross-Sectional Moment

Notes: Cross-sectional moments of residual income are net of age effects. Share of con-
tractions for a given moment is the fraction of years classified as contraction since age 25.
The slopes of the fitted lines are 0.13 and –0.11 for m2 and m3, respectively. Moments for
shares of 0 or 1 are not displayed here for visualization reasons (they are used in the GMM
estimation).
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Estimation. We now turn to the estimation results for household pre-govern-

ment labor income (before taxes and transfers) and household post-government

labor income (after taxes and transfers). We use the number of observations

that contribute to an empirical moment as weights for the moment conditions,

and this way assign more weight to those moments that are themselves esti-

mated more reliably in the data. As additional moment conditions we add the

averages over years of the second to fourth central moments of 1-5 year income

changes. This ensures that the estimated income process is consistent both

with moments of the cross-sectional distribution and with moments of income

changes. We give a collective weight of 10% to the average moments of changes.

In addition to the structure imposed so far, we hold the kurtosis of η fixed over

the business cycle. Let αi denote the ith standardized moment: αi = µi/µ
i/2
2 .

Assuming αη4 (s (t)) = αη4 implies µη,C4 = αη4

(
µη,C2

)2

and µη,E4 = αη4

(
µη,E2

)2

.

This leaves us with 12 parameters that need to be estimated. We use moment

conditions (8a) and (8b) to estimate the variance parameters and the persis-

tence ρ. Given an estimate for ρ, we then use moment conditions (8c) and (8d)

to estimate the third central moments. Likewise, given estimates for ρ and the

variance parameters, we use moment conditions (8e) and (8f) to estimate the

fourth central moments. The third central moment of the cross-sectional dis-

tribution features a low-frequency change (see Panel (e) of Figure 2). In order

to accommodate this in the estimation, and to not confound the estimated

cyclicality, we add a linear trend to the third central moment of transitory

shocks. We report the time average of the implied moment. For inference, we

apply a block bootstrap procedure and resample households, which preserves

the autocorrelation structure of the original sample. We draw 1,000 bootstrap

samples. Table 1 shows the estimates, and Figure 2 illustrates the fit over age

and time of the estimated process for post government income, the income

variable we use in the quantitative analysis in Section 6 (see Appendix B for

the implied standardized moments).

Cyclical Dispersion. The first panel of Table 1 reports the persistence of

the AR(1) component of income along with the estimates of the variances of

19



Table 1: Estimation Results for Pre- and Post Government Income

Estimated Central Moments Implied Standardized Moments
HH Pre HH Post HH Pre HH Post

ρ 0.9601 0.9683
[0.9412; 0.9756] [0.9463; 0.9841]

µχ2 0.1591 0.1076
[0.1361; 0.1786] [0.0897; 0.1237]

µε2 0.1045 0.0752
[0.0948; 0.1133] [0.0677; 0.0816]

µη,C2 0.0375 0.0223
[0.0263; 0.0477] [0.0152; 0.0291]

µη,E2 0.0152 0.0085
[0.0099; 0.0229] [0.0044; 0.0153]

µχ3 −0.1126 −0.0520 −1.77 −1.47
[−0.1530;−0.0727] [−0.0785;−0.0253] [−2.47;−1.21] [−2.32;−0.78]

µε3 −0.1516 −0.0866 −4.49 −4.20
[−0.1623;−0.1374] [−0.0935;−0.0772] [−5.06;−3.97] [−4.79;−3.73]

µη,C3 −0.0332 −0.0164 −4.59 −4.95
[−0.0474;−0.0175] [−0.0263;−0.0061] [−6.73;−2.61] [−7.80;−2.18]

µη,E3 −0.0047 −0.0012 −2.49 −1.54
[−0.0128; 0.0035] [−0.0069; 0.0040] [−6.73; 2.26] [−7.97; 9.09]

µχ4 0.0607 0.0173 2.40 1.50
[0.0000; 0.1508] [0.0000; 0.0741] [0.00; 5.39] [0.00; 5.38]

µε4 0.4250 0.2300 38.94 40.62
[0.3630; 0.4867] [0.1927; 0.2664] [34.52; 44.92] [36.27; 47.65]

µη,C4 0.1359 0.0666 96.85 134.47
[0.0856; 0.1719] [0.0363; 0.0847] [61.15; 141.97] [82.02; 191.34]

µη,E∗4 0.0225 0.0098 96.85 134.47
[0.0089; 0.0488] [0.0022; 0.0272] [61.15; 141.97] [82.02; 191.34]

Notes: Table shows estimated central moments for household earnings (HH Pre) and house-

hold income after taxes and transfers (HH Post). Brackets show 5th and 95th percentiles

of 1,000 bootstrap estimates (in the case of post government income, 998 of the bootstrap

iterations converge). ∗µη,E4 not separately estimated.
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Figure 2: Fit of Estimated Process for Post-Government Earnings

(a) Second Moment over Age (b) Third Moment over Age

(c) Fourth Moment over Age (d) Second Moment over Time

(e) Third Moment over Time (f) Fourth Moment over Time

Notes: Moments are cross-sectional central moments. For each moment, age and year
profiles are based on a regression of the moment on a set of age and year dummies. Blue
lines: empirical moments; red dashed lines: theoretical moments implied by point estimates;
shaded area denotes a 90% confidence band based on the bootstrap iterations.

the components of the income process estimated jointly. We estimate persis-

tence parameters (ρ) of .96 and .97 for pre and post government income, re-

spectively. The estimated variances of all components of the post-government

income process are smaller than their counterparts for pre-government income.

This is consistent with an interpretation that the existing tax and transfer sys-
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tem effectively dampens the idiosyncratic risk faced by households. Both for

pre- and post-government income the estimates imply a countercyclical vari-

ance of persistent shocks: in aggregate downturns, the cross-sectional distribu-

tion of shocks is more dispersed. Our estimate of countercyclicality for post-

government income is quantitatively similar to the one estimated by Storeslet-

ten et al. (2004): the estimated standard deviation of persistent shocks is 61%

higher in aggregate contractions.

Cyclical Skewness. The second panel of Table 1 reports the third central

moments. We find that all shock components estimated for pre-government

and post-government income processes have negative third central moments,

implying negative skewness of shocks. Comparing the post-government income

process to the pre-government income process, the third central moments are

smaller in magnitude, as expected from the reduced dispersion. For both pre

and post government income, the third central moment of persistent shocks

is significantly negative in contractions; point estimates of the third central

moments of persistent shocks in expansions are also negative, however not

statistically different from zero. The second and third central moments to-

gether translate into the third standardized moment, the coefficient of skew-

ness, which is informative about the shape of the distribution and shown in

the last two columns of Table 1. The cyclicality of the third central moment is

stronger relative to the cyclicality of the second moment, which translates into

the standardized moment displaying pro-cyclicality. Thus, aggregate contrac-

tions are periods in which negative persistent shocks become relatively more

pronounced.

Excess Kurtosis. The third panel of Table 1 reports the fourth central

moments. We restrict the kurtosis of persistent shocks to not vary with the

aggregate state of the economy, i.e., αη4(s(t) = C) = αη4(s(t) = E). Again,

the last two columns of Table 1 list the implied standardized fourth moments

(coefficients of kurtosis). The fixed effects are very imprecisely estimated;

the point estimates imply relatively flat distributions (compared to a Normal
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distribtion, which has a kurtosis of 3): the implied kurtosis coefficient at the

point estimates is 2.4 for pre-government income, and 1.5 for post-government

income. The transitory and persistent shocks are estimated to display very

pronounced excess kurtosis of about 39 and 97 for pre-government earnings,

and about 41 and 134 for post-government earnings. These estimates imply

that the distribution of post-government income shocks is more concentrated

in the center, while some households experience shocks that are more extreme

relative to the overall more compressed (in comparison to pre-government

income) distribution. Note that while these estimates of kurtosis seem very

high at first glance, they imply a good fit of the cross-sectional distribution

over age and over years as shown in Figure 2. Furthermore, the estimated

income process is in line with the average kurtosis of income changes.

5 Higher-Order Risk in a Life-Cycle Model

5.1 The Economy

We now set up a quantitative version of the simple two-period model of Sec-

tion 2 by extending it to a standard multi-period life-cycle model with a

stochastic earnings process, a zero borrowing constraint, a fixed retirement

age, and an earnings-related retirement income. To calibrate higher-order

risk attitudes separately from the inter-temporal elasticity of substitution, we

take Epstein-Zin-Weil preferences a la Epstein and Zin (1989, 1991), and Weil

(1989).

Endowments. Households earnings are exogenous and consist of a deter-

ministic age profile and a stochastic income component with transitory and

persistent shocks. The distribution of persistent shocks varies with the ag-

gregate state s ∈ {C,E}, which follows a Markov process with time-invariant

transition matrix Πs. We abstract from the aggregate effects of fluctuations

on wages and interest rates by holding both constant. In this sense there is

no aggregate risk, but cyclical idiosyncratic risk.
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Households live from age j = 0 to age j = J . They retire at the exogenously

given retirement age jr. Labor income net of taxes and transfers at age j ∈
{0, . . . , jr − 1} in aggregate state s is given by

y(z, ε, j; s) = ej · exp(z(s) + ε), (9)

where ej is the deterministic age profile, ε is the transitory income shock,

drawn iid from distribution F̃ε, and z(s) is the persistent income component

which obeys

z′(s′) =

ρz + η′, where η′ ∼
iid
F̃η(s

′) for j < jr

z for j ≥ jr,
(10)

where ρ is the autocorrelation coefficient and η′ is the persistent income shock,

drawn from distribution F̃η(s
′) that depends on aggregate state s. We assume

that exp(ε0) = exp(z0) = 1. In retirement, j ∈ {jr, . . . , J}, households earn

a fixed earnings related pension income contingent on the last income state

before retirement yj = b(zj).
15 Households have access to a risk-free savings

technology with rate of return r, and face a zero borrowing constraint. Thus,

the dynamic budget constraint is

a′(z, ε, j; s) = a(1 + r) + y(z, ε, j; s)− c ≥ 0. (11)

Preferences and Household Problem. Households born into the econ-

omy at history st, date t maximize recursive utility by solving a consumption-

savings problem every period. They discount the future at factor β > 0. The

state variables of the household’s problem are age j, asset holdings a, the per-

sistent income state z, the transitory shock ε, and the aggregate state of the

15With this specification we approximate the average indexed monthly earnings (AIME)
of the US pension system.
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economy s. The recursive problem of households is

Vj(a, z, ε; s) = max
c,a′


(

(1− β̃)c1− 1
γ + β̃ (v(Vj+1(a′, z′, ε′; s′)))1− 1

γ

) 1

1− 1
γ γ 6= 1

exp
{

(1− β̃) ln c+ β̃ ln (v(Vj+1(a′, z′, ε′; s′)))
}

otherwise

s.t. (9), (10), and (11),

where β̃ = β
1+β

denotes the relative utility weight on the certainty equiva-

lent v(Vj+1) from next period’s continuation utility Vj+1(·), which is

v(Vj+1(a′, z′, ε′; s′)) =


(
Ej
[
Vj+1(a′, z′, ε′; s′)1−θ]) 1

1−θ θ 6= 1

exp (Ej [lnVj+1(a′, z′, ε′; s′)]) otherwise.

Parameter γ denotes the inter-temporal elasticity of substitution between

instantaneous utility from consumption and the certainty equivalent of the con-

tinuation utility v(Vj+1(·)). Given γ, parameter θ pins down the relative risk

attitudes of households as discussed in Section 2, respectively in Appendix A.

Conditional expectations are defined with respect to the realization of next

period’s aggregate state of the economy s′, transitory income shock ε′, and

persistent income shock η′.

We solve for household policy and value functions using the method of

endogenous gridpoints. We aggregate by explicit aggregation iterating for-

ward on the cross-sectional distribution Φj(aj, zj, ε; s), which follows from the

initial distribution Φ0(a0, z0, ε0; s) and the transition function Gj(aj, zj, εj; s).

The latter is induced by the exogenous laws of motion of z, s, the exogenous

distribution of ε, and the endogenous transitions a′j(aj, zj, εj; s).

5.2 Calibration

Aggregate Shock Process. Based on our classification of time periods

as contractions and expansions for the US economy, we estimate a Markov

transition process on this data. We estimate π(E|E) = 0.788 and π(C|C) =

0.389, implying the stationary invariant distribution Πs = [0.257, 0.743]′.
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Age Bins and Age Productivity. Each model period corresponds to one

life year. Consistent with our empirical specification, households start working

at age 25 (model age j = 0) and retire at age 60 (model age j = 35).

In the economic model, we abstract from heterogeneity along the dimen-

sions of education, labor market experience, or household size. We calibrate

the age productivity process ej by the fitted age polynomial fage(j) of the first

stage estimation of the earnings process for household post government earn-

ings. We take the weighted average of college and non-college age earnings

profiles that display the usual hump-shaped pattern, cf. Appendix C.4, and

normalize it such that average productivity is equal to one, 1
jr

∑jr−1
j=0 ej = 1.

Idiosyncratic Shock Processes. The most important element of the cal-

ibration is the specification of the distribution functions of the idosyncratic

shocks. The goal of our approach is to directly assess the economic conse-

quences of distributional aspects of these shocks that are summarized in the

central moments—and to thus extend the illustrative analysis from Section 2,

which does not need to make any (parametric) distributional assumptions, to

a quantitative framework. For a given shock, our approach can be summa-

rized in two steps. First, we use a parametric continuous distribution function,

which we parameterize such that its first four central moments fit the ones es-

timated. Second, we discretize this distribution function. Thus, our approach

allows us to translate the estimated central moments directly into the model’s

shock distributions without having to simulate the income process.

As distribution function we choose the Flexible Generalized Lambda Dis-

tribution (FGLD) developed by Freimer et al. (1988), which is characterized

by its quantile function

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
, (12)

where λ is a vector of four parameters with location parameter λ1, scale pa-

rameter λ2, and tail index parameters λ3, λ4.16 For each shock x ∈ {ε, η(s)},
16The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1

4 .
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we fit these parameters such that the FGLD matches the estimated central

moments {µ̂xi }4
i=1 of distributions Fε and Fη(s) (as in Lakhany and Mausser

2000 and Su 2007). We numerically solve for λ3 and λ4 jointly to fit the third

and fourth central moments.17 Next, we determine λ2 to match the variance

and λ1 to match the mean, both in closed form. We then discretize by span-

ning equidistant grids for the respective random variable x ∈ {ε, η(s)} and

by assigning to each grid point probabilities from the integrated probability

density function of the distribution (details in Appendix C.1).

We consider two alternative parameterizations of the FGLD to which we

refer as distribution scenarios. The first scenario features symmetric shock

distributions (µ̂3 = 0) with the estimated variance and a kurtosis of µ̂4
µ̂22

= 3.

The parameter restriction on the FGLD is that λ3 = λ4. We refer to this

scenario as NORM, reflecting that it features the first four central (as well

as standardized) moments of the Normal distribution. The second scenario,

to which we refer as LKSW, features leptokurtic and left-skewed shock dis-

tributions with the estimated second, third, and fourth central moments; no

restrictions apply to the FGLD parameters.18

Figure 3 shows the log density functions of the persistent shock η(s) in con-

tractions and expansions. Panel (a) shows the distributions in scenario LKSW

which features the estimated countercyclical variance, procyclical third, and

countercyclical fourth moments. For comparison, Panel (b) shows Gaussian

distributions featuring the same countercyclical variance. The FGLD distribu-

tion does not nest the Gaussian distribution, and thus, while FGLD distribu-

tion NORM features the same first four central moments, it does not display

the same inverse quadratic log density function. In both distributions, all odd

17Specifically, we solve the minimization problem minλ3,λ4

∑4
i=3 (µi(λ3, λ4)− µ̂i)2 s.t.

min{λ3, λ4} > − 1
4 , where µ̂i is the point estimate of the ith moment, and µi(·) denotes

the central moment of the FGLD.
18We also impose a minimum post-government household income that remains unchanged

across scenarios, i.e., when moving from the scenario with normally distributed shocks to the
scenario with leptokurtic and left-skewed shocks, the lowest level of income that households
can reach is by construction unchanged. This minimum income is expressed relative to
average income. We then adjust incomes such that average income (before multiplying with
the age profile) remains 1.
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moments are zero, and thus the differences between FGLD distribution NORM

and its Gaussian counterpart are captured by the even central moments higher

than the fourth (i.e., the sixth, eighth, tenth, etc.). Following our analytical

analysis in Section 2, these distributional differences mechanically become less

and less important the higher the order is, and eventually their implications

for utility (and consumption behavior) depend on risk attitudes. We thus also

consider a scenario in which we draw shocks from the Normal distribution and

discretize it using standard Gaussian quadrature methods. As documented

in Appendix D.1, all quantitative results are numerically almost identical to

those obtained for FGLD distribution NORM. We therefore use the latter as

our benchmark to which we compare FGLD distribution LKSW. Appendix C.2

reports the estimated, fitted, and discretized moments, as well as the parame-

ter vectors λ for all shocks under the two scenarios NORM and LKSW. In both

distribution scenarios we scale down the transitory shocks because part of the

estimated variance is likely due to measurement error.19 Appendix C.4 shows

central moments 2-4 in logs and levels that result from our parametrization.

Pension System. Social security benefits follow a fixed replacement sched-

ule that approximates the current US bend point formula. We approximate

average indexed monthly earnings (AIME) by the realization of the persis-

tent income shock before entering into retirement zjr−1. We then apply the

bend point formula contained in Appendix C.3 and denote the according

model equivalent to the primary insurance amount (PIA) by p(zjr−1). To

achieve budget clearing of the pension system, pension payments are further

scaled by the aggregate indexation factor % so that individual pension income

is b(zjr−1) = % · p(zjr−1). We compute the average contribution rate from the

data giving τ p = 11.7% (which is close to the current legislation featuring a

marginal contribution rate of τ p = 12.4%). The base for pension contributions

19Following Huggett and Kaplan (2016) we assume that one third of the estimated variance
of the transitory shock is measurement error and reduce the targeted variance accordingly.
We assume that this measurement error is symmetric and accordingly adjust the third
and fourth central moments such that the implied coefficients of skewness and kurtosis are
unchanged.
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Figure 3: Discretized Log Distribution Functions: Persistent Shock

(a) LKSW (b) Normal

Notes: Discretized log distribution functions for the persistent shock η. LKSW: FGLD with

estimated variance, skewness, and kurtosis. Markers denote the grid points used in the

discretized distribution. Normal: Normal distribution with estimated variance discretized

using Gaussian quadrature method. Log density is the base 10 logarithm of the PDF.

in our model is average gross earnings. Since earnings processes in the model

are based on net wages—net of all taxes and transfers—and since we normal-

ize average net wages to one, average gross wages are 1
1−τp−τ , where τ is some

average labor income tax rate (including transfers). We compute τ from the

data giving τ = 16.88%.

Since average labor productivity, the means of the stochastic components zj

and εj, as well as the total population in age group j are all normalized to

one, efficiency weighted aggregate labor in the economy is equal to jr−1. The

measure of pensioners is J − jr + 1. The pension budget is therefore given by

τ p · 1

1− τ − τ p
· (jr − 1) = % ·

∫
p(zjr−1)dΦ(zjr−1) · (J − jr + 1) .

We calibrate % in each distribution scenario so that the pension budget

clears. Since contributions obey a linear tax schedule and by our normal-

ization of income, aggregate contributions are constant across all scenarios.

Recalibrating % therefore implies that also average pension income is the same

across all scenarios. Table C.3 in Appendix C.3 provides the accordingly cali-

brated values of %.
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Initial Assets and Interest Rate. We assume that all households are born

with the same initial assets a0 = ā0. We compute those from the average asset

to net earnings data at age 25, which we calculate from PSID data as 0.89.

We set the annual interest rate of the risk-free asset to r = 3% as in (Kaplan

and Violante 2010). This choice is consistent with a rik-free rate of about 4%

according to Siegel (2002) and a population growth rate of 1% (given that

there is no population growth in our model economy).

Preferences. As discussed in Section 2, risk attitudes play a crucial role for

the welfare effects of higher-order income risk and for the precautionary savings

motive. For each model variant we therefore consider four alternative param-

eterizations and vary θ ∈ {1, 2, 3, 4}. Throughout, we consider risk-sensitive

preferences (Tallarini 2000) and accordingly set the inter-temporal elasticity

of substitution to γ = 1.20 For each θ ∈ {1, 2, 3, 4}, we determine the discount

rate ρ = 1
β
− 1 endogenously. We target the average life-cycle asset profile

scaled by net earnings, which we compute from PSID data for the sample

which we use in the income process estimation. Since our model is not de-

signed to match saving patterns in retirement (there is neither survival risk nor

a bequest motive), we match assets for ages 25-60, the working period in our

model. This calibration is done for distribution scenario LKSW, and we then

hold the calibrated discount rate constant when moving to scenario NORM,

for each calibration of θ.21

Calibrated discount rates range from 1.86% for θ = 1 to 2.59% for θ = 4,

see Table 2, which summarizes the calibration of the model. The reason for

the positive relationship of the calibrated discount rates and θ is that stronger

risk attitudes (larger θ) imply higher precautionary savings which is offset in

20Cooper and Zhu (2016) estimate a portfolio choice model where agents have Epstein-
Zin-Weil preferences, and face the canonical income process with log Normal shocks. They
estimate a risk aversion of 4.4 and an IES of 0.6. We choose an IES of 1 as a natural
benchmark. This is also very convenient when we decompose the welfare effects as described
in Appendix A.7.

21Recalibrating the discount rate under scenario NORM does not alter the results by a
relevant margin and are reported in the appendix for completeness.
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the calibration to the asset target by a larger ρ so that the life-cycle savings

motive is less potent.

Alternative calibration. As the main robustness analysis we consider an

alternative calibration of our model economy, following the benchmark cali-

bration in Kaplan and Violante (2010), which we refer to as KV-calibration.

There are two differences relative to our baseline calibration described above.

First, we set initial assets to zero, and second, we calibrate the discount rate

targeting an aggregate capital-output ratio of 2.5—the ratio implicitly tar-

geted in our baseline calibration is about 4.5. As we show in Section 6.4, the

welfare implications of higher-order risk are smaller in the baseline calibration,

which is why we choose the KV-calibration as robustness.

Table 2: Calibrated Parameters

Working period 25 (j = 0) to 60 (j = jr − 1)
Maximum age 80
IES γ = 1
RA θ ∈ {1, 2, 3, 4}
Discount rate (baseline) ρ ∈ {0.0186, 0.0205, 0.0229, 0.0259}
Discount rate (KV-calibration) ρ ∈ {0.0360, 0.0398, 0.0458, 0.0533}
Interest rate r = 0.03
Pension contribution rate τ p[%] = 11.7%
Pension benefit level See Table C.3
Average tax rate τ [%] = 16.8%
Aggregate shocks π(s′ = c | s = c) = 0.39, π(s′ = e | s = e) = 0.77
Initial ass. / inc. ā0 = 0.89

Notes: Calibration parameters. IES: inter-temporal elasticity of substitution, RA: coeffi-

cient of risk aversion. The discount factor β is calibrated endogenously to match asset to

income data from the PSID. The pension benefit level parameter % is calibrated such that

the pension budget clears.
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6 Quantitative Role of Higher-Order Risk

6.1 Welfare Implications of Higher-Order Income Risk

In order to assess the welfare implications of higher-order income risk, we ask

which world households would prefer to be born into as the average household.

Taking this ex-ante perspective, we accordingly define the Utilitarian social

welfare function as the expected life-time utility function of households born

with initial assets a0 = ā0, idiosyncratic persistent income state z0 = 0, and

transitory shock ε = 0. Corresponding to this notion of an ex-ante perspective

we aggregate expected life-time utilities of newborns in the stationary invariant

distribution of the economy. Since the transition probabilities over aggregate

states are encoded in the value functions and since aggregate fluctuations in our

partial equilibrium model do not affect relative prices, evaluating welfare in the

stationary invariant distribution of the economy is equivalent to aggregating

newborns’ value functions with the stationary invariant distribution of the

Markov chain process, Πs. Accordingly, welfare is given by

W =
∑
s

ΠsV0(a0 = ā0, z0 = 0, ε = 0; s).

We then calculate the consumption equivalent variation (CEV) that house-

holds need to receive in the world without higher-order risk (distribution sce-

nario NORM) in order to be indifferent to a world with higher-order risk as

parameterized by the distribution scenario LKSW. Given the homotheticity of

the utility function, the CEV is gc = WLKSW/WNORM − 1.

We distinguish between three different channels through which idiosyn-

cratic risk translates into utility consequences evaluated from this ex-ante per-

spective. While we hold mean income constant, consumption is endogenous.

When facing different (distribution) scenarios, households make different sav-

ings decisions, and thus realize different mean consumption, i.e., consumption

averaged cross-sectionally and over age. We call the welfare consequence of

this change of mean consumption the mean effect, gmeanc . We in turn refer

to utility consequences of changes in the distribution around mean consump-
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tion as the distribution effect, gdistrc , which we decompose into two sources:

first, the change of the distribution of mean consumption over the life-cycle,

the life-cycle distribution effect, glcdc , and, second, the change of the cross-

sectional distribution of consumption around the mean life-cycle profile, the

cross-sectional distribution effect, gcsdc . The overall CEV is then the sum of

the three components: gc = gmeanc + glcdc + gcsdc (cf. Appendix A.7 for explicit

expressions).

Table 3 summarizes the welfare implications of higher-order income risk

by showing the CEV and its decomposition. For weak risk attitudes (θ = 1),

higher-order risk leads to welfare gains. This result is driven by the mean-

preserving increase (in absolute terms) of the negative third central moment, as

we discuss in Section 2 and further formalize in Proposition 1 in Appendix A.2.

Again in line with the discussion for the simple model, with stronger risk atti-

tudes welfare losses show up. In sum, total welfare losses for scenario LKSW

range from about 0.4% (i.e., small gains) for θ = 1 to −13.6% for strong risk

attitudes (θ = 4).

Table 3: Welfare Implications of Higher-Order Income Risk: CEV in %

Risk Aversion / CEV gc gmeanc glcdc gcsdc
θ = 1 0.387 -0.112 0.482 0.017
θ = 2 -0.445 -0.106 -0.365 0.026
θ = 3 -4.895 0.271 -5.101 -0.065
θ = 4 -13.64 0.966 -14.287 -0.319

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order in-
come risk, expressed as a Consumption Equivalent Variation (CEV) in scenario NORM
that makes households indifferent to the higher-order income risk scenario LKSW. gc: total
CEV, gmeanc : CEV from changes of mean consumption, glcdc : CEV from changes in the dis-
tribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmeanc + glcdc + gcsdc .

The main channel behind the welfare results is the redistribution of con-

sumption over the life-cycle reflected in glcdc . This is a consequence of increased

precautionary savings as reflected in Panel (a) of Figure 4, which displays
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mean log consumption over the life-cycle.22 Consumption in the higher-order

income risk scenario LKSW is lower when young and higher when old com-

pared to scenario NORM. In welfare terms, lower consumption when young

dominates higher consumption when old due to discounting. The mean ef-

fect gmeanc instead is mostly positive because the increased consumption when

old dominates (except for θ = 1 and θ = 2).

Figure 4: Central Moments of Log Consumption by Age (θ = 4)

(a) Mean of Log (b) Variance of Log

(c) Third Central Moment of Log (d) Fourth Central Moment of Log

Notes: Moments of cross-sectional distribution of log consumption over the life-cycle.
NORM: FGLD with moments of the normal distribution, LKSW: FGLD with excess kurtosis
and left-skewness (in logs).

22Here we show the profile for a high risk aversion parameter of θ = 4, because in this
calibration the effects are most evident visually. Qualitatively, effects are the same in the
other risk attitude calibrations. Note that consumption is monotonically increasing over
the life-cycle and thus does not display the typical hump-shaped profile, which is due to a
strong life-cycle savings motive; we address this in Section 6.4.
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Panels (b) to (d) of Figure 4 show the second to fourth central moments

of the consumption distribution over the life-cycle, which are relevant for the

cross-sectional distribution effect gcsdc . To interpret it observe that the variance

of log consumption is lower in scenario LKSW than in scenario NORM for most

ages, whereas the third central moment is initially negative and the kurtosis

of the log consumption distribution is higher at all ages.23 The lower variance

contributes positively to gcsdc , which dominates for weak risk attitudes, whereas

the negative skewness and excess kurtosis contribute negatively, and dominate

for strong risk attitudes.

6.2 Welfare Costs of Cyclical Idiosyncratic Risk

Next, we quantify the utility consequences of cyclical idiosyncratic risk. To

this end, for each of the two distribution scenarios NORM and LKSW we

evaluate the welfare implications for households of facing the actual cyclical

income process relative to a counterfactual income process in which we shut

down the cyclical variation of the distribution. By holding mean wages and

interest rates constant over the cycle, the welfare effects of cyclical risk we

report constitute a lower bound for each scenario.24

As before, W i denotes the social welfare function from an ex-ante perspec-

tive in the cyclical risk scenario, while W i,ncr denotes the social welfare func-

23The Gini coefficient for assets for a risk aversion of 4 is at 0.36 in scenario NORM, and
at 0.34 in scenario LKSW. Thus, introducing higher-order income risk does not increase
the Gini coefficient in a quantitative model such as ours. Also, note that the Gini coeffi-
cient in our calibrated model is substantially lower than in the data and also lower than
what is typically found in quantitative work; e.g., Krueger and Ludwig (2016) compute a
Gini coefficient of assets of 0.55 in an overlapping generations model calibrated to the US
economy. The key reason for the relatively modest asset inequality lies in our focus on
ex-post heterogeneity, i.e., the only source of heterogeneity is income risk faced throughout
the life cycle. In our alternative KV-calibration the Gini coefficient for assets is 0.50 under
scenario NORM and 0.38 under scenario LKSW.

24Note that the direct effect of business cycles is typically found to be small. For example,
Storesletten et al. (2001) find the direct effect to be an order of magnitude smaller than
the role of cyclical variation in idiosyncratic risk. However, there can be indirect utility
“interactions” between aggregate and idiosyncratic risk, which may be large (Harenberg
and Ludwig 2019), and which we abstract from here in order to focus on the role of the
idiosyncratic shock distribution.
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tion in the no cyclical risk scenario. We compute the CEV that makes house-

holds in the scenario with no cyclical risk indifferent to being born into the

scenario with cyclical risk, gi,crc = W i/W i,ncr − 1, for i ∈ {NORM,LKSW}.
When computing welfare in the non-cyclical scenario W i,ncr we assume

that households always draw from the “expansion-distribution” of the sce-

nario rather than taking some weighted average of shock distributions for ex-

pansions and contractions. When using log-Normal distributions of shocks,

one approach in the literature is to consider an average distribution, which

features the average of expansion and contraction variances, see for example

Storesletten et al. (2001). This approach is not applicable in our analysis as

it is conceptually not clear what characterizes such an “average” distribution

once other moments than the variance are taken into account. To the extent

that some average distribution represents a better non-cyclical counterfactual

scenario, the pure effect of cyclical idiosyncratic risk is overstated in our anal-

ysis.25 However, we are mainly interested in the difference of welfare costs of

cyclical income risk across scenarios, i.e., the “difference in difference” compar-

ison between gLKSW,crc and gNORM,cr
c , i.e., ∆gcrc = gLKSW,crc − gNORM,cr

c . Thus,

our approach to “normalize” the economy without cyclical idiosyncratic risk

is of second order importance as it is consistent across scenarios.26

Table 4 reports the overall welfare costs of cyclical idiosyncratic risk in

scenarios NORM and LKSW, and the decomposition of the total CEV into its

components, i.e., gi,crc = gi,cr,meanc +gi,cr,lcdc +gi,cr,csdc . First, note that consistent

with our theoretical analysis of Section 2 in each scenario the welfare costs

of business cycles increase monotonically in θ. Second, as for the welfare

costs of higher-order risk, the main contributor to the welfare consequences is

25Indeed, Storesletten et al. (2001) find welfare costs of cyclical risk of about 1.3%. They
consider CRRA preferences with θ = 2. In one of our sensitivity checks in Appendix D.2,
we also consider CRRA preferences with θ = 2. In this case we obtain welfare costs of
about 2.7% in scenario NORM. Besides other differences between our model and theirs,
one reason for the higher welfare costs in our analysis lies in the different approach to
characterizing the non-cyclical scenario.

26One alternative is to follow the “integrating out” principle (see Krusell and Smith 1999
and Krusell et al. 2009), which first isolates a true idiosyncratic component of the shock,
and then integrates over the probability distribution of the aggregate state.
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the redistribution of consumption over the life-cycle captured by glcdc . Recall

that a negative glcdc is a consequence of the counter-clockwise tilting of the

consumption profile because of increased precautionary savings. Third, mean

effects are positive. Higher savings increase consumption in the middle of the

life-cycle, which pushes up mean consumption. As previously, on average over

the life-cycle this second effect dominates the mean effect.

Consistent with the afore documented result (and with our theoretical anal-

ysis of Section 2) that with logarithmic utility the total welfare effect from

higher-order income risk is positive for scenario LKSW, we now correspond-

ingly find that welfare losses from cyclical idiosyncratic risk are about 0.29%p

lower in scenario LKSW (last column in first panel of Table 4). Similarly, with

moderate risk attitudes (risk aversion of 2), the welfare implications of cycli-

cal income risk in scenario LKSW are only mildly higher than those obtained

in scenario NORM. With strong risk attitudes (θ = 4), the welfare losses

compared to scenario NORM are significantly higher: They are about 7.2%p

higher in scenario LKSW. Thus, the welfare effects of cyclical risk are strongly

underestimated in conventional approaches based on Gaussian distributions of

innovations if risk attitudes are strong.

In Appendix D.2 we analyze an additional distribution scenario, which

features shocks that have excess kurtosis, but are symmetric (in logs). In the

calibration with θ = 4, welfare costs of cyclical risk are about 4.5%p higher in

this distribution scenario than in scenario NORM (see table D.3). Combined

with the lower part of table 4 we thus find that of the differential welfare losses

from higher-order risk approximately 63%(≈ 4.48/7.16 · 100%) are due to the

excess kurtosis and the remaining 37% are due to the left-skewness of shocks.

6.3 Insurance Against Idiosyncratic Risk

Finally, we adopt concepts developed in the literature on consumption in-

surance (Blundell et al. 2008; Kaplan and Violante 2010) to ask how well

households are self-insured against income shocks xj(s) ∈ {εj, ηj(s)} and how

this insurance varies across scenarios. In the model, the transitory and per-
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Table 4: Welfare Effects of Cyclical Idiosyncratic Risk

CEV gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 1

NORM -1.823 0.36 -2.144 -0.039 0
LKSW -1.536 0.289 -1.794 -0.031 0.287

Risk Aversion, θ = 2
NORM -3.466 0.652 -4.004 -0.114 0
LKSW -3.767 0.606 -4.269 -0.105 -0.301

Risk Aversion, θ = 3
NORM -4.895 0.896 -5.606 -0.185 0
LKSW -7.755 1.031 -8.549 -0.238 -2.86

Risk Aversion, θ = 4
NORM -6.117 1.111 -6.98 -0.248 0
LKSW -13.272 1.472 -14.312 -0.432 -7.155

Notes: Consumption Equivalent Variation in the non-cyclical scenario that makes house-
holds indifferent to the cyclical scenario. gc = gmeanc + glcdc + gcsdc , where gmeanc : CEV
from change of mean consumption, glcdc : CEV from changes in the distribution of con-
sumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional distribution.
∆gc = gLKSWc − gNORMc .

sistent shocks are directly observed and thus we adopt the measure of Kaplan

and Violante (2010) to our setting with cyclical risk. Conditional on today’s

aggregate state s, the insurance coefficient φxj (s) is given as the share of the

variance of next period’s shock xj+1(s′) that does not translate into consump-

tion growth, and thus the pass-through coefficient 1 − φxj (s) is the coefficient

of a linear regression of consumption growth on shock x, which captures how

strongly the shock translates into consumption:

1− φxj (s) =
cov(∆ ln (cj+1(s′ | s)) , xj+1(s′))

var(xj+1(s′))
, (13)

for ∆ ln (cj(s
′ | s)) = ln (cj+1(s′ | s))− ln (cj(s)).

Figure 5 reports the insurance coefficients φxj for all ages j ∈ {0, . . . , J}, as

a weighted average of the coefficients in contractions and expansions27 for the

27We weigh with the stationary invariant distribution Πs.
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Figure 5: Insurance Coefficients: Strong Risk Attitudes, θ = 4

(a) Transitory Shock (b) Persistent Shock

Notes: Figures show the degree of consumption insurance against transitory and persistent
shocks separately by age.

transitory shock ε in Panel (a) and for the persistent shock η(s) in Panel (b).

Results are quantitatively similar for different values of risk attitudes, so we

discuss only the numbers for θ = 4. For scenario LKSW, consumption in-

surance against both transitory and persistent shocks is improved relative to

scenario NORM as measured by the φ-coefficients.

Do the higher insurance coefficients in scenario LKSW really represent

better insurance, though? Arguably, a reasonable meaning of better insurance

is a weaker translation of negative shocks into consumption. In order to explore

whether this is the case, consider the following decomposition of the aggregate

pass-through coefficient from equation (13) for shock x ∈ η, ε:

1− φx =
E [∆ ln(c(·))x]− E [∆ ln(c(·))]E [x]

var(x)
(14)

=
E [∆ ln(c(·))x|x > 0]

var(x)
+
E [∆ ln(c(·))x|x < 0]

var(x)
− E [∆ ln(c(·))]E [x]

var(x)
.

As already learned from Figure 5, the aggregate pass-through of both tran-

sitory and persistent shocks is smaller in scenario LKSW (insurance coefficient

is larger), as reported in the first column of Table 5. Now consider the contri-

bution of consumption comovement with positive and negative shocks, respec-

tively, to the aggregate pass-through coefficient, which are captured by the
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first two components of the sum in equation (14). In scenario NORM, neg-

ative transitory shocks do not translate into negative consumption changes:

comovements with negative realizations of ε contribute −1.4% to the pass-

through coefficient. In scenario LKSW, the (negative) consumption reaction

to negative shocks is important: 30.3% of the pass-through coefficient are

accounted for by negative transitory shocks leading to negative consumption

adjustments. At the same time, consumption reacts less strongly to positive

changes. Thus, the fact that the aggregate pass-through is smaller (the in-

surance coefficient is larger) is indeed explained by increased precautionary

savings. However, built-up savings do not suffice to smooth out the negative

shocks in scenario LKSW as well as they do in scenario NORM. Two more

comments are in order. First, the negative contribution of transitory shocks

to the pass-through measure is explained by the mean reversion towards the

upward sloping consumption profile over the life-cycle, which outweighs the

negative transitory shock. Second, to understand the non-zero third term in

the decomposition recall that the shocks are normalized in levels, implying a

non-zero mean of the shocks in logs.

Table 5: Aggregate Pass-Through and its Decomposition, θ = 4

Transitory 1− φε E[∆c · ε, ε < 0] E[∆c · ε, ε > 0] −E[∆c] · E[ε]
NORM 0.051 -0.014 0.883 0.131
LKSW 0.045 0.303 0.525 0.172
Persistent 1− φη E[∆c · η, η < 0] E[∆c · η, η > 0] −E[∆c] · E[η]
NORM 0.397 0.408 0.575 0.017
LKSW 0.357 0.521 0.453 0.026

Notes: Table shows aggregate consumption pass-through coefficient (1-insurance coeffi-
cient), and its decomposition into components according to equation 14. Values are ex-
pressed as shares of total pass-through. ∆c = ∆ ln(c(·)).

For persistent shocks, the same mechanics are at work. In scenario NORM,

about 41% of the pass-through coefficient is generated by consumption re-

ductions with negative shocks, while about 58% come from consumption in-

creases with positive shocks. In scenario LKSW, negative shocks pass through

more (52% of overall), and positive shocks pass through less (45%).
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Summing up, for both transitory and persistent shocks, the reduction of

the pass-through (increase of insurance coefficient) when moving from sce-

nario NORM to scenario LKSW is driven by an increased propensity to save,

while at the same time negative shocks actually translate more into consump-

tion. Thus, the simple aggregate insurance (or pass-through) coefficient based

on comovements of shocks and consumption is an imprecise measure of insur-

ance against risk, if one plausibly has in mind that better insurance means

that negative shocks translate less into consumption—and that this is what

should be reflected by a larger value of an insurance coefficient.

6.4 Alternative Calibrations

We start by considering the alternative calibration a la Kaplan and Violante

(2010) (KV-calibration), where we set initial assets to zero, and calibrate the

discount factor targeting an aggregate capital-output ratio of 2.5. Relative

to our baseline calibration, the endogenously calibrated discount rate now ex-

ceeds the (exogenous) interest rate, cf. Table 2, which in isolation would lead

to a consumption profile negatively sloped over age. As households engage in

precautionary savings, they save when young to build up a buffer against nega-

tive income risk. Together, the two forces lead to a hump-shaped consumption

profile, shown in panel (b) of Figure 6 for the two distribution scenarios NORM

and LKSW (for θ = 4); panel (a) repeats the mean profile under the baseline

calibration for comparison.

Table 6 summarizes the results of the two welfare analyses for θ = 2 and

θ = 4. For each value of θ, the first row shows the welfare costs of higher-

order risk, which turn out substantially higher under the KV-calibration. In

order to insure themselves against the worse downside risk under scenario

LKSW, households save relatively much at young ages, which tilts the aver-

age consumption profile relative to the one under scenario NORM. The dif-

ference between the two profiles is stronger than in our baseline calibration,

which is driven by the exogenously set zero initial assets and the endogenously

determined higher valuation of the presence relative to the future. This in-
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Figure 6: Age Profile of Consumption: Baseline vs. KV-Calibration (θ = 4)

(a) Baseline (b) KV-Calibration

Notes: Shows life cycle profile of average log consumption under alternative calibrations.

terpretation is further supported by investigating the fraction of borrowing

constrained households. In the baseline calibration, this fraction is basically

at zero in all risk scenarios with high risk attitudes of θ = 4. In the KV calibra-

tion of scenario NORM with a risk aversion of θ = 4, about 16% of households

are initially (at biological age 25) borrowing constrained. In scenario LKSW,

this fraction is substantially lower, at about 1% only, because households face

worse downside risk which induces them to save more. The worse outcomes

at young ages are crucial given the ex-ante perspective on welfare and they

receive higher weight in the KV calibration because of the higher discount

rate.

The remaining rows in Table 6 show, for each value of θ, the welfare costs

of cyclical idiosyncratic risk in scenarios NORM and LKSW under the KV-

calibration. Again, qualitatively the results are the same as in our baseline

calibration, and the differences in magnitude are driven by the same mecha-

nisms as described for the overall welfare costs. In Appendix D.2 we investigate

the relative roles of initial assets and the endogenously calibrated discount rate

for these results. We find that zero versus positive initial assets are quantita-

tively somewhat more relevant for the differences in these welfare costs than

the differences in discount rates.
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Table 6: Welfare Analysis in KV-Calibration

gc gmeanc glcdc gcsdc ∆gc
Risk Aversion, θ = 2

Higher-order risk -4.979 0.326 -4.034 -1.271
NORM: cyclical risk -2.407 0.899 -3.29 -0.016 0
LKSW: cyclical risk -4.413 1.088 -5.405 -0.096 -2.006

Risk Aversion, θ = 4
Higher-order risk -26.374 2.535 -27.236 -1.673
NORM: cyclical risk -2.987 1.316 -4.273 -0.031 0
LKSW: cyclical risk -17.159 2.164 -18.621 -0.702 -14.172

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order in-
come risk, expressed as a Consumption Equivalent Variation (CEV) in scenario NORM
that makes households indifferent to the higher-order income risk scenario LKSW. Also:
Consumption Equivalent Variation in the non-cyclical scenario that makes households in-
different to the cyclical scenario. gc: total CEV, gmeanc : CEV from changes of mean con-
sumption, glcdc : CEV from changes in the distribution of consumption over the life-cycle,
gcsdc : CEV from changes in the cross-sectional distribution of consumption, where gc =
gmeanc + glcdc + gcsdc . ∆gc = gLKSWc − gNORMc .

We next analyze the aggregate measure of (self-)insurance against idiosyn-

cratic risk under the two distribution scenarios. We again focus on the results

for θ = 4, as there is no relevant variation across different values of risk at-

titudes. As in the baseline calibration, the insurance against both transitory

and persistent shocks is measured to be better when facing higher-order risk:

the pass-through coefficients are lower for LKSW, as shown in Table 7. Again,

the decomposition of the change reveals that the lower pass-through does not

reflect better insurance in the sense of negative shocks translating less into

consumption. As in the baseline calibration, however, positive shocks trans-

late less into consumption increases (as more go into savings). A notable

difference between the KV-calibration and our baseline is that for both tran-

sitory and persistent shocks the pass-through is almost symmetric for positive

and negative shocks. This result is again driven by the higher impatience (the

calibration features a higher discount rate) under the KV-calibration and a cor-

respondingly higher fraction of households at the borrowing constraint, which
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consequently display more pronounced hand-to-mouth consumption behavior

through higher marginal propensities to consume.

Table 7: KV-Calibration: Aggregate Pass-Through, θ = 4

Transitory 1− φε E[∆c · ε, ε < 0] E[∆c · ε, ε > 0] −E[∆c] · E[ε]
NORM 0.101 0.562 0.445 -0.007
LKSW 0.081 0.558 0.383 0.058
Persistent 1− φη E[∆c · η, η < 0] E[∆c · η, η > 0] −E[∆c] · E[η]
NORM 0.549 0.529 0.472 -0.001
LKSW 0.443 0.563 0.425 0.013

Notes: Table shows aggregate consumption pass-through coefficient (1-insurance coeffi-
cient), and its decomposition into components according to equation 14. Values are ex-
pressed as shares of total pass-through. ∆c = ∆ ln(c(·)).

In Appendix D.2 we further present results on the welfare costs of cyclical

idiosyncratic risk for three additional calibrations, respectively specifications,

of the model. We first evaluate the welfare consequences of an expected utility

formulation with CRRA preferences where we restrict θ = 1
γ
. When risk

attitudes θ are stronger, now simultaneously the IES γ is lower by construction,

and our calibration determines a lower discount rate with higher θ because

that second effect turns out to be the dominant force for asset accumulation.

Consequently, the future is valued more in both scenarios NORM and LKSW

and therefore the differences in the welfare costs of cyclical idiosyncratic risk

are lower when θ is increased than we find under the baseline calibration. This

finding underscores the importance for our research questions of disentangling

risk attitudes from inter-temporal preferences. Second, we recalibrate the

discount rate also for scenario NORM and find that our results on the welfare

costs of cyclical idiosyncratic risk are very little affected. Finally, we discuss a

general equilibrium extension of our model, in which we take into account the

effects of higher-order idiosyncratic risk on wages and interest rates, that works

through the equilibrium capital allocation. The details of this specification are

described in Appendix D.3. We still abstract from aggregate productivity risk

and consider a solution that fully reflects higher-order risk, while being an

approximation regarding its cyclicality. The equilibrium feedback effect turns
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out to be weak, which is explained by the life-cycle structure of the economy

and the consumption profile of Figure 4. When facing scenario LKSW instead

of scenario NORM, young agents have higher precautionary savings; however,

these savings will be dis-saved at old age. Thus, aggregate savings in the

economy do not differ strongly.

7 Conclusion

We first develop a novel Generalized Method of Moments estimator of higher-

order income risk, that extends the canonical income process, which captures

key features of labor income risk as a combination of persistent and transitory

income shocks. We show how the second to fourth central moments of the dis-

tributions of shocks can be estimated. Our estimates on PSID household-level

earnings imply that the distribution of persistent income shocks exhibits strong

cyclicality: the variance is countercyclical, while the third central moment is

procyclical. All shock components exhibit strong excess kurtosis. The existing

tax and transfer system dampens both transitory and persistent income shocks

and reduces cyclicality.

In the second part of the paper we analyze the relevance of the identified

higher-order risk from an economic perspective. Within an otherwise standard

partial equilibrium life-cycle model with incomplete markets, we find that,

first, higher-order risk has important welfare consequences—relative to a world

with log-Normal shocks. Second, the presence of higher-order risk matters for

the welfare costs of business cycles. Third, higher-order income risk affects the

degree of consumption self-insurance.
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