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Abstract

We explore the consequences of higher-order risk (left-skewness and
excess kurtosis of idiosyncratic income risk) in a standard incomplete-
markets life-cycle model. We calibrate the model using a canonical
income process with persistent and transitory risk, extended to feature
cyclical shock distributions with left-skewness and excess kurtosis. We
estimate this income process by GMM for US household data, and find
shocks to be highly leptokurtic, with countercyclical variance and pro-
cyclical skewness of persistent shocks. Our quantitative exercise shows
that, first, higher-order risk has sizable welfare implications, which de-
pend on risk attitudes; second, it matters quantitatively for the welfare
costs of cyclical idiosyncratic risk; third, the existence of this higher-
order risk has non-trivial implications for self-insurance against shocks.
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1 Introduction

The extent of idiosyncratic income risk matters for many macroeconomic ques-

tions. As our main contribution we systematically evaluate a set of economic

consequences of higher-order risk in an incomplete-markets model. Higher-

order risk refers to features of the distribution of idiosyncratic risk captured

by moments beyond the variance. We systematically decompose the role of

the variance, skewness, and kurtosis of the shock distributions for economic

choices—and link those to properties of preferences (risk attitudes). As our

second contribution we estimate higher-order idiosyncratic income risk and

its variation over the business cycle within the canonical transitory-persistent

decomposition (dating back to Gottschalk and Moffitt 1994).

Implications of Higher-Order Risk. We consider a standard incomplete-

markets life-cycle model with ex-post heterogeneity, i.e., the only source of

inequality in the model is the risky idiosyncratic component of household in-

come. Households receive stochastic income throughout their working lives,

after which they enter a retirement phase and receive income through a pay-

as-you-go pension system. The only means of self-insurance against income

risk is private savings in a risk-free asset.

We compare model outcomes under two different calibrations of the income

process: first, with shock distributions that feature (estimated) dispersion,

non-zero skewness and excess kurtosis of shocks, and second, with Gaussian

shock distributions that feature the same dispersion (but with skewness and ex-

cess kurtosis of zero). The goal of the analysis is to establish how higher-order

risk of the distribution matters for economic outcomes predicted by the model

framework. Households have recursive preferences over consumption (Epstein

and Zin 1989; Epstein and Zin 1991; Weil 1989), which allows us to separately

control the intertemporal elasticity of substitution and the coefficient of risk

aversion. The latter also pins down higher-order risk attitudes, and through

this is a crucial determinant of the behavioral reaction to higher-order risk.
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Our analysis delivers three main findings. First, evaluated from an ex-

ante perspective higher-order risk has sizable negative welfare implications for

strong risk attitudes: the consumption equivalent variation (CEV) that makes

agents in the economy with log-Normal shocks indifferent to the economy with

higher-order risk ranges between −0.5% (for a coefficient of risk aversion of 2)

and −14.5% (relative risk aversion of 4). The dominant economic mechanism

driving this result is a change of the consumption profile over the life cycle:

when facing riskier income, risk-sensitive agents form more precautionary sav-

ings, and thus consume less at young ages. With weak risk attitudes (like log

utility), the welfare effect can be positive (CEV of 0.4%).1

Second, higher-order risk matters for the welfare costs of business cycles.

Since Lucas (1987, 2003) argued that the gains of smoothing cycles beyond

what the existing tax and transfer system does would be small, several studies

have explored the role of both ex-ante and ex-post heterogeneity, with Imro-

horoglu (1989) being the first to emphasize the importance of idiosyncratic

risk and incomplete markets. In a model similar to hers, Storesletten et al.

(2001) allow for cyclical variance of persistent shocks as estimated in Storeslet-

ten et al. (2004). Following a similar strategy, we provide the first systematic

assessment of the welfare consequences of cyclical higher-order risk as cap-

tured in a continuous distribution function, and thus bridge this approach to

papers that explore cyclical downside risk in the form of unemployment (e.g.,

Krusell and Smith 1999, Krusell et al. 2009, Krebs, 2003, 2007, and Beaudry

and Pages 2001). Under higher-order risk we find welfare costs—computed as

CEV making households in the non-cyclical economy indifferent to the cyclical

economy—which are 0.3 percentage points (risk aversion of 2) to 7.6 percent-

age points (risk aversion of 4) larger than under log-Normal shocks.

Third, higher-order risk crucially matters for the degree of self-insurance

against shocks. We employ a measure of self-insurance introduced in the liter-

ature by Blundell et al. (2008), who suggest to evaluate the degree of partial

1What might appear surprising at first glance, follows mechanically: the introduction
of third-order risk (left-skewness) reduces second-order risk (variance) when characterizing
the distribution in levels and holding the variance in logs constant.
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insurance against income shocks by estimating the pass-through of the identi-

fied transitory and permanent shocks to consumption changes. In the context

of our model based analysis, we follow Kaplan and Violante (2010), who study

how much of the empirically estimated partial insurance can be generated in a

standard incomplete markets model. We find that incorporating higher-order

risk leads to weaker pass-through of income shocks to consumption. However,

this does not necessarily represent better insurance against negative shocks.

In a scenario with higher-order risk agents form more precautionary savings

(relative to a scenario in which they face log-Normal shocks), which implies a

weaker consumption reaction to positive shocks. Negative shocks can actually

translate more strongly into negative consumption changes, if the higher sav-

ings do not suffice to smooth out negative shocks which are more pronounced

relative to Normal shocks. In particular, for transitory shocks we find this to

be the case. Therefore, we caution against using only the insurance coefficient

by Blundell et al. (2008) for the analysis of the degree of partial insurance

against income risk.

Estimation of Higher-Order Risk. We characterize both transitory and

persistent shocks by their second to fourth central moments, which in the case

of the persistent shocks we allow to be state-contingent. We estimate these dis-

tribution moments using the second to fourth cross-sectional central moments

and co-moments of incomes—while similar estimations traditionally are based

solely on the variance-covariance matrix. Identification of cyclicality follows

from the fact that the accumulated second to fourth central moments systemat-

ically differ across cohorts if these cohorts experience different macroeconomic

histories and if the moments of shocks differ systematically over the business

cycle. This identification idea was introduced in Storesletten et al. (2004) for

the second moment, and we extend it to higher-order moments.

While Storesletten et al. (2004) analyze household-level income including

government transfers from the Panel Study of Income Dynamics (PSID) and

find countercyclical variance2 of persistent shocks, later evidence in Guvenen

2This terminology has been introduced in the macroeconomic asset pricing literature, see
Mankiw (1986), Constantinides and Duffie (1996), and Storesletten et al. (2007). Building
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et al. (2014) based on administrative social security data (SSA) for individual

males in the United States suggests that individual downside risk is larger

in contractions, while upside risk is smaller—this is reflected in a more pro-

nounced left-skewness of the distribution of earnings changes in contractions.

Busch et al. (2022) conduct a non-parametric analysis and find procyclical

skewness of individual and household-level annual earnings changes in Ger-

many, Sweden, France, and the US.3

Our estimation approach draws a richer image of cyclical income changes

within the transitory-persistent framework and thus bridges the previous stud-

ies. We use the PSID, which allows us to control for a rich set of household-

level information and to take into account several relevant public transfer

components. We focus on a measure of household net income defined as la-

bor income plus public transfers minus taxes. This reflects the view that this

measure represents the amount of risk remaining after insurance through the

main insurance mechanisms other than self-insurance—i.e., within-household

insurance and government taxes and transfers (cf. Blundell et al. 2008)—,

and as such delivers the necessary ingredient for our model analysis, in which

agents insure against this remaining risk using private savings.

We find that both transitory and persistent shocks to household net income

feature strong left-skewness, and that persistent shocks are significantly cycli-

cal: in contractions, their distribution is more dispersed and more left-skewed.

The magnitude of dispersion is in line with the estimates in Storesletten et al.

(2004). Finally, we find strong excess kurtosis of transitory and persistent

shocks. One related recent study of cyclical risk is Angelopoulos et al. (2022),

who adapt a version of our estimator and document procyclical skewness of

persistent shocks in data from the British Household Panel Study.

on the framework of Storesletten et al. (2004), Bayer and Juessen (2012) focus on residual
hourly wages and based on PSID data estimate countercyclical dispersion of persistent
shocks in the United States.

3More recently, Guvenen et al. (2021) document that, in a given year, most individuals
experience small earnings changes, while some workers experience very large changes of
their earnings. This is summarized by a high kurtosis—relative to what the conventional
assumption of log-normality implies. See also De Nardi et al. (2020) for the Netherlands,
and Druedahl and Munk-Nielsen (2020) for Denmark.
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Our paper is part of a growing literature that explicitly analyzes the impli-

cations of new insights on cyclical skewness of persistent earnings shocks for

macroeconomic questions. Golosov et al. (2016) allow for time-varying skew-

ness of idiosyncratic risk in a study of optimal fiscal policy, Catherine (2021)

analyzes the implications of procyclical skewness of idiosyncratic income risk

for the equity premium, and McKay (2017) links procyclical skewness to ag-

gregate consumption dynamics. Our analysis is also related to work on the

implications of rich earnings dynamics in general (without considering the

cyclicality of risk). De Nardi et al. (2020) feed an income process a la Arel-

lano et al. (2017) into an incomplete markets model and study the role of

richer earnings dynamics for consumption insurance and the welfare costs of

idiosyncratic risk. Their analysis features non-linearity, non-normality, and

age-dependence of the income process and corroborates results from Karahan

and Ozkan (2013) regarding the role of age-dependent persistence and distri-

butions of shocks. Civale et al. (2017) analyze implications of left-skewed and

leptokurtic idiosyncratic shocks for the interest rate and aggregate savings in

an otherwise standard Aiyagari economy. Besides the particular outcomes of

interest, our contribution to that literature is that we provide a transparent

link between moments of the shock distribution and the outcomes of interest,

emphasizing the relevant properties of preferences.

The remainder of the paper is structured as follows. Section 2 illustrates the

implications of higher-order risk for welfare and savings in a simple two-period

model, and then sets up the quantitative version of the life-cycle economy. Sec-

tion 3 presents our empirical approach, discusses identification of the income

process, and presents the results of applying the estimator to US household

earnings data from the PSID. Section 4 shows the consequences of higher-order

risk in the quantitative model, and Section 5 concludes.
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2 Higher-Order Risk in a Life-Cycle Model

2.1 A Two-Period Model

Before we turn to a quantitative life-cycle economy, we consider a simple two-

period consumption-savings problem, in which agents face riskless first-period

income and risky second-period income. Within this framework, we illustrate

that the distribution of risk, (i.) matters for welfare, (ii.) affects precautionary

savings, and (iii.) affects the marginal propensity to consume (MPC). The

utility and behavioral implications depend on risk attitudes of households.

Setting. The household receives riskless income y0 and risky income y1 in

periods 0 and 1, respectively. Denote the distribution function of y1 by Ψ(y),

which is characterized by its central moments around the mean, µy
k.

4 House-

holds enter period 0 with zero assets and, in the general formulation of the

model, have access to a risk-free savings technology with zero interest. The

budget constraints are c0+ a1 = y0 and c1 ≤ a1+ y1, where a1 denotes savings

in period 0, and c0 and c1 denote consumption in the two periods. Preferences

over consumption streams are additively separable and per-period utility is

given by u(c). We assume that u(c) is continuously differentiable, that the

derivatives feature alternating signs with positive odd derivatives, and denote

the k’th derivative of the utility function by u(k). We assume no discounting of

the future such that expected lifetime utility is U = u(c0) + E[u(c1)]. We also

assume that E[y1] = y0. The assumptions imply that there is no intertemporal

savings motive in this simple model.

Welfare. Consider hand-to-mouth consumers and shut down the savings tech-

nology, i.e., a1 = 0. Mechanically, the welfare implication of changing the k’th

central moment of Ψ(y1) is pinned down by the k’th derivative of u(c). To

see this, consider an exact Taylor series expansion of the objective function

4µy
k = E[(y − E[y])k] for k = 1, 2, 3, . . . .
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around the mean of period 1 consumption, c1 = E[y1]:5

U = u(c0) + E[u(c1)] = u(c0 = y0) +
∞∑
k=0

u(k)(c1 = E[y1])
k!

µy1
k (1)

We refer to an increase of even moments and/or a reduction of odd moments

as an increase in risk: a higher variance (larger µy1
2 ), higher kurtosis (larger

µy1
4 for a given µy1

2 ), or more negative skewness (smaller, or “more negative”,

µy1
3 for a given µy1

2 ) all imply a riskier distribution. Per Equation (1)—and

our assumption of alternating signs of the derivatives u(k)—we see that the

household experiences a welfare reduction for each of these increases in risk—

and how strong that reduction is depends on the size of the corresponding

derivative of the utility function. The relevant risk attitudes that imply that

the household cares about second, third, and fourth-order risk are referred to

as risk aversion, prudence, and temperance, respectively (see, e.g., Eeckhoudt

(2012) for a discussion of these risk attitudes).

Precautionary Savings. Now, we allow for savings. Given that households

face risky income in period 1, they will form precautionary savings in order to

forearm against low income realizations. The first order condition character-

izing the optimal savings choice is

f ≡ u(1)(c0)− E[u(1)(c1)] = u(1)(y0 − a1)−
∞∑
k=0

u(k+1)(E[y1] + a1)

k!
µy1
k = 0 (2)

where after plugging in the budget constraints, we express marginal utility

tomorrow by a Taylor expansion. As before, this step allows us to see how the

change of some central moment of period 1 income translates into the expected

value—in this case, of marginal utility, for a given choice a1. Equation (2)

shows that an increase of risk (higher µy1
2 , lower µy1

3 , higher µy1
4 ) implies an

5The expression given for the Taylor series expansion around c1 = E[y1] follows from

the linearity of the expectation operator: E[u(c1)] = E[
∑∞

k=0
u(k)(E[y1])

k! (y1 − E[y1])k] =∑∞
k=0

u(k)(E[y1])
k! E[(y1 −E[y1])k] =

∑∞
k=0

u(k)(E[y1])
k! µy1

k . See Appendix A.1 for a derivation of
all analytical expressions used in this section.
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increase of expected marginal utility. Thus, the household chooses a higher a1

such that the FOC holds in the higher risk scenario. The Taylor expansion

shows that derivative u(k+1)(c) matters to induce a behavioral reaction of a1

to a change of the k’th moment.6 Thus, preferences need to feature a positive

third derivative (prudence) for µy1
2 to matter, a negative fourth derivative

(temperance) for µy1
3 to matter, and a positive fifth derivative (edginess) for µy1

4

to matter.7 If they do, then households reduce the adverse utility consequences

of increased risk (second- and higher-order) by increasing savings a1.
8

MPC. From (2) we can derive the marginal propensity to save (MPS) out of

a shock to period 0 income by setting the total derivative df
dy0

to zero. The

MPC then follows as MPC=1-MPS:

MPC ≡ 1− ∂a1
∂y0

= 1−
(
1 +

E[u(2)(y1 + a1)]

u(2)(y0 − a1)

)−1

. (3)

We are now interested in dMPC
dµ

y1
k

for k = 2, 3, 4. There are two effects of an

increase of risk: first, the precautionary savings response discussed above

increases a1, which per Equation (3) decreases the MPC.9 This intuitively

simply says that due to increased risk, households form more precautionary

savings, and therefore they consume less out of an additional unit of income re-

ceived today. Second, for a given a1, an increase of risk reduces the (negative)

expected value E[u(2)(y1 + a1)]: again, this becomes apparent when consid-

ering a Taylor expansion around the mean, which gives E[u(2)(y1 + a1)] =∑∞
k=0

u(k+2)(E[y1]+a1)
k!

µy1
k . Thus, the expression in paranthesis in (3) is larger for

a given a1, giving a larger MPC. This reaction of the MPC to an increase

of risk is driven by high-order risk attitudes: e.g., the fourth derivative—

6We explore precautionary savings in response to higher-order risk in the absence of
a liquidity constraint. This complements Carroll et al. (2021), who analyze the savings
response to a liquidity constraint.

7The term edginess was coined by Lajeri-Chaherli (2004).
8This extends the result on precautionary savings in response to increases in the variance

in Kimball (1990) and corroborates findings in Eeckhoudt and Schlesinger (2008) using a
slightly different approach.

9To see this, recall that u(2)(c) is negative and u(3)(c) is positive.
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temperance—matters for MPC reactions to variance. The overall effect on the

MPC of increasing risk is thus ambiguous and a quantitative question.

2.2 A Life-Cycle Model

Per the illustration in the two-period model we know that deviations from

log-Normal shocks matter in principle—but does the estimated deviation from

the canonical income process matter quantitatively? Put differently, what is

the economic relevance of the estimated skewness and kurtosis? To answer

this question, we use a quantitative version of the simple two-period model of

Section 2.1 by extending it to a standard multi-period life-cycle model.

Endowments. Households live from age j = 0 to age j = J . Before they

retire exogenously at age jr, they receive exogenous earnings at each age j < jr

that consist of an age-specific deterministic component ej and two stochastic

income components: transitory income shock ε, drawn iid from distribution

F̃ε, and persistent income z, which is AR(1) with autocorrelation coefficient ρ

and shock η. The distribution of the persistent shock, F̃η(s), depends on the

aggregate state s. In retirement, persistent income stays constant and thus

z′(z; s′) =

ρz + η′ for j < jr,where η′ ∼
iid

F̃η(s
′)

z for j ≥ jr.
(4)

For j ≥ jr households earn a fixed pension income contingent on the last

persistent income state before retirement, b(z). Net household income is thus

y(j, z, ε) =

ej · exp(z + ε) for j < jr

b(z) for j ≥ jr.
(5)

There is a risk-free savings technology with (acyclical) rate of return r, and a

zero borrowing constraint. Thus, the dynamic budget constraint is

a′(j, z, ε; s) = a · (1 + r) + y(j, z, ε)− c(j, z, ε; s) ≥ 0. (6)
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The aggregate state s ∈ {C,E} follows a first-order Markov process with

time-invariant transition matrix Πs. We abstract from a first-order effect of

the cycle on income.

Preferences and Household Problem. Households maximize recursive util-

ity by solving a consumption-savings problem every period. They discount the

future at factor β > 0.10 The state variables of the household are age j, asset

holdings a, persistent income state z, transitory shock ε, and the aggregate

state of the economy s. The recursive problem is

Vj(a, z, ε; s) = max
c,a′


(
(1− β̃)c1−

1
γ + β̃ (v(Vj+1(a

′, z′, ε′; s′)))1−
1
γ

) 1

1− 1
γ γ ̸= 1

exp
{
(1− β̃) ln c+ β̃ ln (v(Vj+1(a

′, z′, ε′; s′)))
}

γ = 1

(7)

s.t. (4), (5) and (6),

where v(Vj+1(·)) denotes the certainty equivalent of next period’s continuation

value, β̃ = β
1+β

the relative utility weight on this certainty equivalent and

γ the inter-temporal elasticity of substitution between current period utility

from consumption and v(Vj+1(·)). Parameter θ pins down risk attitudes of

households (see Section 2.1), and thus determines the certainty equivalent of

the risky continuation value:

v(Vj+1(a
′, z′, ε′; s′)) =


(
Ej

[
Vj+1(a

′, z′, ε′; s′)1−θ
]) 1

1−θ θ ̸= 1

exp (Ej [lnVj+1(a
′, z′, ε′; s′)]) otherwise,

(8)

where conditional expectations Ej are defined with respect to the realization

of next period’s aggregate state of the economy s′, transitory income shock ε′,

and persistent income shock η′.

Equilibrium and Model Solution. We consider a partial equilibrium in

which the interest rate is exogenously given and the pension system clears.

10It is straightforward to show that our intuitive arguments of Section 2.1 extend to
recursive preferences, cf. our working paper version, Busch and Ludwig (2020).
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Given constant aggregate income across different scenarios of idiosyncratic in-

come risk, this ensures that also average pension income is constant across

these scenarios—this rules out first-order income difference across scenarios

and thus a change of the life-cycle savings incentives. We solve for household

policy and value functions using the method of endogenous gridpoints (cf.,

Carroll 2005). We aggregate by explicit aggregation iterating forward on the

age-specific cross-sectional distribution Φj(aj, zj, ε; s), which follows from the

initial distribution Φ0(a0, z0, ε0; s) and the transition function Gj(aj, zj, εj; s).

The latter is induced by the exogenous laws of motion of s and z, the exogenous

distribution of ε, and the endogenous age-specific policy function a′j(aj, zj, εj; s).

Risk Scenarios. We explore the consequences of higher-order income risk

through the lens of the model by, first, calibrating the distributions of shocks, F̃ε

and F̃η(s) such that they feature higher-order risk, and, second, comparing

model outcomes to a calibration with log-Normal shock distributions. In or-

der to inform the calibration, we estimate an income process consistent with

the one specified above (outside of the model), which we then feed into the

model. To this end, we proceed in three steps. First, we estimate the second

to fourth central moments of the shock distributions by GMM. Second, we

fit parametric distribution functions to the estimated moments. Third, we

discretize the distributions using their quantile functions to use them in the

model. Thus, our approach directly translates the estimated central moments

into the model’s shock distributions without the need to simulate. We cal-

ibrate the remaining elements of the model in a standard way, with details

provided in Section 4.1. We now turn to the estimation of the income process.

3 Estimating Higher-Order Income Risk

3.1 Income Process with Higher-Order Risk

Let log income of household i of age j in year t be

ln(yijt) = f (Xijt, Yt) + ỹijt, (9)
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where f (Xijt, Yt) is the deterministic component of income, i.e., the part that

can be explained by observable individual and aggregate characteristics, Xijt

and Yt, respectively, and ỹijt is the residual part of income, which is assumed

to be orthogonal to f (Xijt, Yt). The deterministic component f (Xijt, Yt) is a

linear combination of a cubic in age j, fage(j), the log of household size, year

fixed effects, and an education premium fEP (t) for college education, which

we allow to vary over years t:

f (Xijt, Yt) = β0t + fage (j) + 1eduit=cfEP (t) + βsize ln (hhsizeijt) (10)

where fage (j) = βage
1 j + βage

2 j2 + βage
3 j3, fEP (t) = βEP

0 + βEP
1 t + βEP

2 t2, and

indicator 1eduit=c takes on value 1 for college-educated households.

We model residual income ỹijt as the sum of three components: a persis-

tent component zijt, an i.i.d. transitory shock εijt, and an idiosyncratic fixed

effect χi. The idiosyncratic fixed effect is a shock drawn once upon entering

the labor market from a distribution which is the same for every cohort.11 The

persistent component is modeled as an AR(1) process with innovation ηijt:

ỹijt = χi + zijt + εijt, where εijt ∼
iid

Fε, χi ∼
iid

Fχ (11a)

zijt = ρzij−1t−1 + ηijt, where ηijt ∼
id
Fη (s (t)) , (11b)

where Fχ, Fε, and Fη (s (t)) denote the density functions of χ, εijt, and ηijt,

respectively. The density function of the persistent shock depends on the ag-

gregate state of the economy in period t, s(t). This income process features the

canonical transitory-persistent specification (e.g., Moffitt and Gottschalk, 2011).

However, instead of focusing on the variance alone, we are interested in esti-

mating the second to fourth central moments of the shocks, which we denote

by µx
2 , µ

x
3 , and µx

4 , for x ∈ {χ, ε, η(s)}.12

11Thus, from the econometric perspective, we estimate a random effects model.
12One potential disadvantage of using central moments to characterize the shocks in the

income process is that they are hard to interpret by themselves. However, in the data,
the central moments of the cross-sectional income distribution are strongly correlated with
percentile-based counterparts to those moments. We are thus confident that the estimated
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As in Storesletten et al. (2004), the economy in period t can be in one

of two aggregate states s(t), which we denote by E (expansion) and C (con-

traction), s(t) ∈ {E,C}. Thus, the central moments of the persistent shock

µη
k (s (t)) are equal to µη,E

k or µη,C
k if s (t) = E or s (t) = C, respectively

(for k = 2, 3, 4). Both empirical evidence (e.g., Blundell et al. 2008) and

model-based analyses (e.g., Kaplan and Violante 2010) find that households

can insure well against transitory shocks. We therefore follow Storesletten

et al. (2004) and only consider the cyclicality of persistent income shocks,

which have long-lasting effects in the context of a life-cycle decision making

problem. We still do capture skewness and kurtosis of the (acyclical) transi-

tory component and explore its quantitative role. In Appendix B.2 we show

robustness with respect to this benchmark choice.

We assume that upon entering the labor market, in addition to drawing

the fixed effect χi, each worker draws the first realizations of transitory and

persistent shocks, εit and ηit, from the distributions Fε and Fη (s (t)), respec-

tively. Thus, the moments of the distribution of the persistent component for

the cohort entering in year t at age j = 0 are µk(zi0t) = µη
k(s(t)).

Implied Central Moments. Central (co-)moments are given by

µk (ỹijt; θ) = E
[
(ỹijt − E [ỹijt])

k |st
]

(12a)

µkl (ỹijt, ỹij+1t+1; θ) = E
[
(ỹijt − E [ỹijt])

k (ỹij+1t+1 − E [ỹij+1t+1])
l |st

]
, (12b)

where θ =
(
ρ, µχ

2 , µ
ε
2, µ

η,E
2 , µη,C

2 , µχ
3 , µ

ε
3, µ

η,E
3 , µη,C

3 , µχ
4 , µ

ε
4, µ

η,E
4 , µη,C

4

)
is a vector

of second-stage parameters, and st summarizes the history of aggregate states

up to year t.13 The process implies the following cross-sectional moments of

the distribution of residual income at age j in year t:

central moments—and the implied standardized moments skewness and kurtosis—do cap-
ture salient features of the distribution.

13Note that we need to condition only on st, not on st+1, because period t+1 shocks are
uncorrelated with all shocks accumulated up to period t.
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µ2(ỹijt; θ) = µχ
2 + µε

2 + µ2(zijt) (13a)

µ3 (ỹijt; θ) = µχ
3 + µε

3 + µ3(zijt) (13b)

µ4 (ỹijt; θ) = µχ
4 + µε

4 + µ4(zijt) + 6 (µχ
2µ

ε
2 + (µχ

2 + µε
2)µ2(zijt)) , (13c)

and the following (auto) co-moments:

µ11 (ỹijt, ỹij+1t+1; θ) = µχ
2 + ρµ2(zijt) (14a)

µ21 (ỹijt, ỹij+1t+1; θ) = µχ
3 + ρµ3(zijt) (14b)

µ31 (ỹijt, ỹij+1t+1; θ) = µχ
4 + ρµ4(zijt) + 3 (µχ

2µ
ε
2 + (µχ

2 + ρ (µχ
2 + µε

2))µ2(zijt)) ,

(14c)

where µk(zijt), for k = 2, 3, 4 are given recursively by µ2(zijt) = ρ2µ2(zij−1t−1)+

µη
2(s(t)), µ3(zijt) = ρ3µ3(zij−1t−1) + µη

3(s(t)), and µ4(zijt) = ρ4µ4(zij−1t−1) +

6ρ2µ2(zij−1t−1)µ
η
2(s(t)) + µη

4(s(t)), respectively.

Identification. All parameters of (11) are identified using the moments (13a)–

(14c) and their empirical counterparts. As seen in (13a), the sum (µχ
2 + µε

2)

is identified as the intercept of the variance profile over age. Next, the differ-

ence between the two expressions for (13a) and (14a) identifies µχ
2 separately

from µε
2. The persistence parameter ρ is identified from the curvature of the

variance age profile. To see this, ignore t for the moment, and consider the

change of variance from age j to j + 1: ∆µ2(ỹij) = µ2(ỹij+1) − µ2(ỹij) =

(ρ2 − 1)µ2(zij) + µη
2 = ... = µη

2ρ
2j. Thus, the relative slope at two different

ages j and j′ > j identifies ρ: ∆µ2(ỹij′)/∆µ2(ỹij) = ρ2j
′
/ρ2j = ρ2(j

′−j). A

concave variance profile over age implies ρ < 1. The overall magnitude of

the increase of the cross-sectional variance over age identifies the variance of

persistent shocks, µη
2.

The above logic translates almost one-for-one to the third moment: (µχ
3 + µε

3)

is identified via the intercept of the age profile of the third central moment,

as seen in (13b). The difference between the expressions for the third central

moment and co-moment, equations (13b) and (14b), identifies µχ
3 separately

14



from µε
3.

14 Given ρ and the variance parameters µx
2 for x ∈ {χ, ε, η(s)}, equa-

tions (13c) and (14c) identify the fourth central moments µx
4 for x ∈ {χ, ε, η(s)}

in the same way as for the second and third central moments.

Let us now turn to cyclicality. The difference between µη,C
2 and µη,E

2 is

identified by the difference of the cross-sectional variance of different cohorts

of the same age (for cohorts that by that age lived through different histories

of contractions and expansions). The use of cross-sectional moments for iden-

tification allows us to exploit macroeconomic information that predates the

micro panel, thereby incorporating more business cycles in the analysis than

covered by the sample, as pointed out by Storesletten et al. (2004). Con-

sider the persistent component of the income process in equation (11b). The

variance of the innovations accumulate as a cohort ages, as can be seen in

equation (13a). If the innovation variance is higher in contractionary years,

then a cohort that lived through more contractions will have a higher income

variance at a given age than a cohort at the same age that lived through fewer

contractions, if the persistence is high.

Our extension of Storesletten et al. (2004) is based on the insight that other

central moments accumulate in a similar fashion, as seen in equations (13b)

and (13c). Consider the third central moment and compare again two cohorts

when they reach a certain age. If the third central moment of the shock was

smaller (more negative) in a contraction than in an expansion, i.e., µη,C
3 < µη,E

3 ,

then this would imply a more negative cross-sectional third central moment for

the cohort that worked through more contractions.15 For a given dispersion

this implies a reduction of skewness (a more left-skewed distribution).

Note that by restricting the transitory shocks to not vary over the business

cycle we do not bias the estimated cyclicality of persistent shocks, which is

identified via accumulated shock distributions. Note that Huggett and Kaplan

14Also, the curvature of the age profile of the third moment gives additional overidentifying
restrictions for the persistence parameter ρ.

15Let us emphasize that the cross-sectional distribution of ỹijt does not converge to a
Normal distribution: the third and fourth central moments of the shocks accumulate over
age. This allows identification of higher-order moments of the shock distributions based on
cross-sectional moments. Of course, if the shock distributions are symmetric in logs, then
this is identified as well, as µ3(ỹijt) = 0 in this case.
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(2016) use a similar strategy based on second and third central moments and

co-moments, without resorting to pre-sample aggregate information in the

spirit of Storesletten et al. (2004) as we do.

3.2 Data and Sample Selection

We use data from the Panel Study of Income Dynamics (PSID), which inter-

views households in the United States annually from 1968 to 1997 and every

other year since then. The representative core sample consists of about 2,000

households in each wave, and we use data from 1977–2012.16 We estimate

the income process at the household level. De Nardi et al. (2020) show that

at the individual level, the PSID sample captures well the salient features of

earnings dynamics documented in administrative social security data by Gu-

venen et al. (2021), who also resort to it for the analysis of wage and hours

dynamics. Similarly, Arellano et al. (2017) estimate a rich earnings process

using the PSID. Busch et al. (2022) document that the cyclical changes of the

distribution of annual earnings changes in the PSID reflect the dynamics in

social security data documented by Guvenen et al. (2014).17

Household net income is defined as household labor income plus public

transfers minus taxes. As measure of labor income we use annual total labor

income which includes income from wages and salaries, bonuses, and the labor

part of self-employment income. We then sum up head and spouse annual

labor income. We impute taxes using Taxsim, and add 50% of the estimated

payroll taxes to the sum of head and spouse labor incomes to obtain pre-

government income. We aggregate public transfers to the household level and

include measures of unemployment benefits, workers’ compensation, combined

old-age social security and disability insurance (OASI), supplemental security

16We do not use earlier waves because of poor coverage of income transfers before 1977.
While the change to a biannual survey frequency implies that households are observed only
every other year after 1997, the estimated income process continues to be at the annual
level. Thus, starting in 1997, two shocks realize between two observation periods.

17Hryshko and Manovskii (2018) discuss some heterogeneity of income dynamics across
PSID samples.
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income, aid to families with dependent children (AFDC), food stamps, and

other welfare.

We deflate all nominal values with the annual CPI, and select households

of at least two adults if the household head is between 25 and 60 years of

age. The minimum of our measure of household income and a pre-government

measure, which does not include the tax and transfer component, needs to

be above a constant threshold, which is defined as the income from working

520 hours at half the minimum wage. Central moments (especially of higher

order) are imprecisely estimated in small samples. We therefore estimate the

moments for a given year and age group based on a sample from a five-year

window over age within the year, which also smoothes the age profiles of these

moments.

Defining Business Cycles. We classify years (from 1942–2012) as contrac-

tions or expansions. Starting from the NBER dating of peaks and troughs,

we classify a year as a contraction if (i) it completely is in a contractionary

period, which is defined as the time from peak to trough, (ii) if the peak is in

the first half of the year and the contraction continues into the next year, (iii)

if a contraction started before the year and the trough is in the second half of

the year. Given the sluggish synchronization of labor market outcomes with

the macroeconomic indicators that the NBER takes into account (cf. Guvenen

et al. 2014, Huggett and Kaplan 2016), we expand the dating based on mean

earnings of males in the PSID. We classify the following years as contractions:

1945, 1949, 1953, 1957, 1960, 1970, 1974, 1980–83, 1990–91, 2001–02, 2008–10.

All years that are not classified as contractions are classified as expansions.

3.3 Estimation Results: Cyclical Idiosyncratic Risk

Illustration of Identification. In Figure 1 we plot the cross-sectional second

and third central moments of residual household net income against the share

of years classified as contractions out of all years a cohort went through since

age 25 once reaching the given year. Each marker denotes a moment for

households of some age j in some year t, mk(ỹijt) for k = 2, 3. The pattern that
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emerges is that a higher share of contractionary years correlates positively with

the cross-sectional second moments, and negatively with the cross-sectional

third moments. These correlations identify the cyclicality of the moments of

the shocks.

Figure 1: Cross-Sectional Moments by Aggregate History

(a) Second Cross-Sectional Moment (b) Third Cross-Sectional Moment

Notes: Cross-sectional moments of residual income are net of age effects. Share of contrac-
tions for a given moment is the fraction of years classified as contraction since age 25. The
slopes of the fitted lines are 0.13 and –0.11 for m2 and m3, respectively. Moments for shares
of 0 or 1 are not displayed for visualization reasons (they are used in the GMM estimation).

Estimation. We use the number of observations that contribute to an em-

pirical moment as weights for the moment conditions, and this way assign

more weight to those moments that are themselves estimated more reliably

in the data. Daly et al. (2022) discuss the importance of the panel composi-

tion for consistency of estimates based on income changes vs. cross-sectional

moments. In the context of our quantitative life-cycle evaluation, it is cru-

cial for us to match cross-sectional distribution moments over the life-cycle.

Further, the accumulated shocks captured by those cross-sectional moments

identify our cyclicality estimates. Still, partly reflecting the insights from Daly

et al. (2022), we include as additional moment conditions the averages over

years of the second to fourth central moments of 1-5 year income changes.

This ensures that the estimated income process is both, consistent with mo-
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Table 1: Estimation Results for Household Net Income

Estimated Central Moments
ρ 0.9683

[0.9463; 0.9841]

µχ
2 0.1076 µχ

3 −0.0508 µχ
4 0.0173

[0.0897; 0.1237] [−0.0780;−0.0253] [0.0000; 0.0741]

µε
2 0.0752 µε

3 −0.0866 µε
4 0.2300

[0.0677; 0.0816] [−0.0935;−0.0771] [0.1927; 0.2664]

µη,C
2 0.0223 µη,C

3 −0.0167 µη,C
4 0.0666

[0.0152; 0.0291] [−0.0266;−0.0062] [0.0363; 0.0847]

µη,E
2 0.0085 µη,E

3 −0.0013 µη,E∗
4 0.0098

[0.0044; 0.0153] [−0.0073; 0.0040] [0.0022; 0.0272]

Notes: Estimated central moments for household income after taxes and transfers. Brackets
show 5th and 95th percentiles of 1,000 bootstrap estimates (998 of the bootstrap iterations

converge). ∗µη,E
4 not separately estimated.

ments of the cross-sectional distribution and broadly consistent with moments

of income changes. We give a collective weight of 10% to the latter.

In addition to the structure imposed so far, we hold the kurtosis of η fixed

over the business cycle. Note that this does not mean that we restrict the

fourth central moment to be acyclical: Let αi denote the i
th standardized mo-

ment, i.e., αi = µi/µ
i/2
2 . Assuming αη

4 (s (t)) = αη
4 implies µη,C

4 = αη
4

(
µη,C
2

)2

and µη,E
4 = αη

4

(
µη,E
2

)2

. In Appendix B.2 we show robustness with respect

to this restriction. This leaves us with 12 parameters to estimate. We use

moments (13a) and (14a) to estimate the variance parameters and the persis-

tence ρ. Given an estimate for ρ, we then use moments (13b) and (14b) to

estimate the third central moments. Likewise, given estimates for ρ and the

variance parameters, we use moments (13c) and (14c) to estimate the fourth

central moments. The third central moment of the cross-sectional distribution

features a low-frequency change (see Panel (e) of Figure 2). In order to accom-

modate this in the estimation, and to not confound the estimated cyclicality,

we add a linear trend to the third central moment of transitory shocks. This

serves to detrend the moment, as we fit a stationary process. We report the

time average of the implied moment. For inference, we apply a block bootstrap
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procedure and resample households to preserve the autocorrelation structure

of the data. Table 1 shows the estimates, and Figure 2 illustrates the fit over

age and time (further, Appendix B shows standardized moments).

Figure 2: Fit of Estimated Process for Household Net Income

(a) Second Moment over Age (b) Third Moment over Age

(c) Fourth Moment over Age (d) Second Moment over Time

(e) Third Moment over Time (f) Fourth Moment over Time

Notes: Moments are cross-sectional central moments. For each moment, age and year
profiles are based on a regression of the moment on a set of age and year dummies. Blue
lines: empirical moments; red dashed lines: theoretical moments implied by point estimates;
shaded area denotes a 90% confidence band based on the bootstrap iterations.
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Cyclical Dispersion. The first column of Table 1 reports the persistence of

the AR(1) component of income along with the estimates of the variances of

the components of the income process estimated jointly. The estimated persis-

tence parameter (ρ) is 0.97. The estimates imply a countercyclical variance of

persistent shocks: in aggregate downturns, the cross-sectional distribution of

shocks is more dispersed. Our estimate of countercyclicality is quantitatively

similar to the one estimated by Storesletten et al. (2004): the estimated stan-

dard deviation of persistent shocks is 61% higher in aggregate contractions.

Cyclical Skewness. The second column of Table 1 reports the third central

moments. We find that all shock components have negative third central

moments, implying negative skewness of shocks. The third central moment of

persistent shocks is significantly negative in contractions; the point estimate

of the third central moment of persistent shocks in expansions is also negative,

however not statistically different from zero. The second and third central

moments together translate into the third standardized moment, the coefficient

of skewness, which is informative about the shape of the distribution. The

cyclicality of the third central moment is stronger relative to the cyclicality of

the second moment, which translates into the standardized moment displaying

pro-cyclicality. Thus, aggregate contractions are periods in which negative

persistent shocks become relatively more pronounced.

Excess Kurtosis. The third column of Table 1 reports the fourth central

moments. The fixed effects are very imprecisely estimated; the point esti-

mates imply relatively flat distributions (compared to a Normal distribtion,

which has a kurtosis of 3): the implied kurtosis coefficient at the point esti-

mates is 1.5. The transitory and persistent shocks are estimated to display

very pronounced excess kurtosis of about 41 and 134. Note that while these

estimates of kurtosis seem very high at first glance, they imply a good fit of

the cross-sectional distribution over age and over years as shown in Figure 2.

Furthermore, the estimated income process is in line with the average kurtosis

of income changes.18

18We also estimate the process on pre-government income, cf. Appendix B.1.
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Robustness. In Appendix B.2 we present a range of alternative empirical

specifications, such as estimating parameters jointly (instead of step-wise),

varying the weight given to moments of changes, allowing for cyclicality of

the transitory component, among others. The key insight is robustness of the

core estimates, i.e., those informing the model calibration—the persistence

and distributional moments of the persistent component, and the moments of

transitory shocks.

4 Quantitative Role of Higher-Order Risk

4.1 Calibration of the Life-Cycle Model

Idiosyncratic Income. A model period is one year. Households start work-

ing at age 25 (j = 0) and retire at age 60 (j = 35). We calibrate the deter-

ministic age profile ej by the fitted age polynomial fage(j) of the first-stage

estimation, where we abstract from heterogeneity by education, labor mar-

ket experience, or household size by taking the weighted average of college

and non-college age profiles that display the usual hump-shaped pattern, cf.

Appendix C.1. We normalize average productivity to one, i.e., 1
jr

∑jr−1
j=0 ej = 1.

Next, for each stochastic component (i.e., ε, η(E), η(C)) we use a Flexible

Generalized Lambda Distribution (FGLD). The FGLD is developed in Freimer

et al. (1988), and can be characterized by its quantile function

Q(p;λ) = F−1(p;λ) = x = λ1 +
1

λ2

(
pλ3 − 1

λ3

− (1− p)λ4 − 1

λ4

)
, (15)

where p denotes a percentile and λ is a vector of four parameters with location

parameter λ1, scale parameter λ2, and tail index parameters λ3, λ4.
19 The

four parameters of the FGLD can be calibrated well to match the first four

central moments of a distribution (cf. Lakhany and Mausser 2000 and Su

2007). Calibration targets for each shock x ∈ {ε, η(E), η(C)} are the central

moments {µ̂x
i }4i=2 of distributions Fε and Fη(s), estimated in the second stage;

19The parametric constraints are λ2 > 0, and min{λ3, λ4} > − 1
4 .
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we choose the first moment such that the expected value in levels is normalized

to one. We then discretize by spanning equidistant grids for the respective

random variable x ∈ {ε, η(s)} and by assigning to each grid point probabilities

from the integrated probability density function of the distribution (details in

Appendix C.1).

We consider two alternative parameterizations of the FGLD to which we

refer as distribution scenarios. The first scenario, LKSW, features leptokur-

tic and left-skewed shock distributions with the estimated second, third, and

fourth central moments.20 Panel (a) in Figure 3 shows the log density func-

tions of the persistent shock η(s) in contractions and expansions. The second

scenario, NORM, features FGLD distributions with the first four central mo-

ments of a Gaussian distribution with the estimated variance. Panel (b) shows

the corresponding Gaussian distributions for the persistent component.21

Appendix C.1 reports the estimated, fitted, and discretized moments of

the shocks, as well as the parameter vectors λ for all shocks under the two

scenarios NORM and LKSW.22 It also shows central moments 2–4 of cross-

sectional income in logs and levels that result from our parameterization.

Pension System. The model pension system approximates the current US

bend point formula, in which we approximate individual average indexed

monthly earnings (AIME) by the realization of the persistent income shock

before entering into retirement zjr−1. This yields the model equivalent to the

20We also impose a minimum household net income that remains unchanged across sce-
narios, which turns out to be non-binding in either scenario.

21Note that the FGLD distribution NORM is not exactly identical to a Gaussian, but
with no quantitative implications: any differences between FGLD distribution NORM and
its Gaussian counterpart are captured by the even central moments higher than the fourth
(the sixth, eighth, tenth, etc.). Following our analytical analysis in Section 2.1, these me-
chanically become less and less important with the order. As documented in Appendix D.1,
all quantitative results for a Gaussian distribution are numerically almost identical to those
obtained for FGLD distribution NORM, which we choose to compare to benchmark LKSW
given its nesting in the FGLD distribution.

22Following Huggett and Kaplan (2016) we assume that one third of the estimated variance
of the transitory shock is measurement error and reduce the targeted variance accordingly.
We assume that this measurement error is symmetric and accordingly adjust the third
and fourth central moments such that the implied coefficients of skewness and kurtosis are
unchanged.
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Figure 3: Discretized Log Distribution Functions: Persistent Shock

(a) LKSW (b) Normal

Notes: Discretized log distribution functions for the persistent shock η. LKSW: FGLD with

estimated variance, skewness, and kurtosis. Markers denote the grid points used in the

discretized distribution. Normal: Normal distribution with estimated variance discretized

using Gaussian quadrature method. Log density is the base 10 logarithm of the PDF.

primary insurance amount (PIA), denoted by p(zjr−1), which we scale by ϱ

to obtain pension benefits as b(zjr−1) = ϱ · p(zjr−1). Pension contributions

obey a linear schedule with the contribution rate calibrated to 11.7%. By

our normalization of income, aggregate contributions are constant across sce-

narios. We calibrate ϱ so that the pension system clears, which implies that

average pension income is also constant across scenarios, and thus we rule out

changes in life-cycle savings motives. Appendix C.2 provides the details of the

contribution scheme, the pension budget, and the calibrated values of ϱ.

Aggregate Shock Process. Based on our classification of time periods as

contractions and expansions for the US economy, we estimate a Markov tran-

sition process on this data. We estimate π(s′ = E|s = E) = 0.7885 and

π(s′ = C|s = C) = 0.3889, implying the stationary invariant distribution Πs =

[0.2571, 0.7429]′.

Initial Assets and Interest Rate. We assume that all households are born

with the same initial assets a0 = ā0. We compute those from the average asset

to net earnings data at age 25, which we calculate from PSID data as 0.89.
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We set the annual interest rate of the risk-free asset to r = 3% as in Kaplan

and Violante (2010). This choice is consistent with a rik-free rate of about 4%

as in Siegel (2002) and a technological growth rate of 1% (given that there is

no technological growth in our model economy).

Preferences. We consider risk-sensitive preferences (Tallarini 2000)—and ac-

cordingly set the inter-temporal elasticity of substitution to γ = 1—and four

alternative parameterizations for θ ∈ {1, 2, 3, 4}. Based on the estimates

in Cooper and Zhu (2016) we take θ = 4 as our benchmark parametriza-

tion.23 For each θ ∈ {1, 2, 3, 4}, we determine the discount rate ρ = 1
β
− 1 by

targeting the average life-cycle asset profile scaled by net earnings, which we

compute from PSID data for the sample which we use in the income process

estimation. Since our model is not designed to match saving patterns in re-

tirement (there is neither survival risk nor a bequest motive), we match assets

for ages 25-60, the working period in our model. This calibration is done for

distribution scenario LKSW, and we then hold the calibrated discount rate

constant when moving to scenario NORM, for each calibration of θ.24

Calibrated discount rates range from 1.86% for θ = 1 to 2.60% for θ = 4,

see Table 2. The reason for the positive relationship of the calibrated discount

rates and θ is that stronger risk attitudes (larger θ) imply higher precautionary

savings which is offset in the calibration to the asset target by a larger ρ so

that the life-cycle savings motive is less potent.

Alternative Calibration. As the main robustness analysis we consider an

alternative calibration of our model economy, following the benchmark cali-

bration in Kaplan and Violante (2010), which we refer to as KV-calibration.

There are two differences relative to the baseline calibration described above.

First, we set initial assets to zero, and second, we calibrate the discount rate

targeting an aggregate capital-output ratio of 2.5—the ratio implicitly tar-

23Cooper and Zhu (2016) estimate a risk aversion of 4.4 and an IES of 0.6. We choose
an IES of 1 as a natural benchmark. This is also very convenient when we decompose the
welfare effects as described in Appendix A.2.

24Recalibrating the discount rate under scenario NORM does not alter the results by a
relevant margin and are reported in the Appendix D.3 for completeness.
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geted in our baseline calibration is about 5.4. As we show in Section 4.5, the

welfare implications of higher-order risk are larger in the KV-calibration.

Table 2: Calibrated Parameters

Working period 25 (j = 0) to 60 (j = jr − 1)
Maximum age 80
Elasticity of inter-temporal of substitution γ = 1
Coefficient of risk aversion θ ∈ {1, 2, 3, 4}
Discount rate (baseline) ρ ∈ {0.0186, 0.0205, 0.0229, 0.0260}
Discount rate (KV-calibration) ρ ∈ {0.0361, 0.0462, 0.0633, 0.0919}
Interest rate r = 0.03
Pension contribution rate τ p = 0.117
Pension benefit level ϱ shown in Table C.4
Average tax rate τ = 0.168
Aggregate shocks π(s′ = C | s = C) = 0.3889, π(s′ = E | s = E) = 0.7885
Initial ass. / inc. ā0 = 0.89

Notes: The discount rate ρ is calibrated endogenously to match the average asset-to-income

life-cycle profile from the PSID (baseline) or the aggregate capital-output ratio of 2.5 (KV).

The pension benefit level is calibrated to clear the pension budget.

4.2 Welfare Effect of Higher-Order Income Risk

First, we assess the welfare effect of higher-order income risk per se—i.e., we

translate the deviation from Gaussian shock distributions towards skewed and

leptokurtic distributions into welfare consequences. To this end, we define the

social welfare function from an ex ante perspective as the certainty equivalent

of being born into the economy under a given distribution scenario. We express

the welfare function as a function of the stochastic consumption stream ci(a),

which denotes optimal consumption at every age for every possible history,

given starting out with asset holdings a, when facing shock distribution sce-

nario i: W i (ci(a)) = ν (V i
0 (a, z, ε; s)) for i ∈ {NORM,LKSW}. The certainty

equivalent is given by (8), and the expectation operator within ν(·) is taken

over the idiosyncratic shocks and the aggregate state. In particular, agents

draw a shock ε from distribution F̃ε, and an initial persistent shock η from
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conditional distribution F̃η(s), while s ∈ {E,C} is drawn from the stationary

distribution of the aggregate state, Πs.

We evaluate the welfare function for households starting with average as-

sets, i.e., W i (ci(a = ā0)). Given the optimal consumption plans under each

distribution scenario, we then calculate the consumption equivalent variation

(CEV) that households need to receive in scenario NORM in order to be in-

different to scenario LKSW. Homogeneity of the utility function implies that

W i ((1 + gc)c
i(a = ā0)) = (1 + gc)W

i (ci(a = ā0)), where gc proportionately

varies consumption in every state and period. FromWLKSW
(
cLKSW (a = ā0)

)
=

WNORM
(
(1 + gc)c

NORM(a = ā0)
)
, the CEV follows as gc = WLKSW/WNORM−

1, where W i = W i (ci(a = ā0)).

Table 3 contains four panels for the different calibrations of risk attitudes.

Within each panel, the first row shows the CEV along with a decomposition

that we explain below. Focus first on the total CEV. In line with the discussion

for the two-period model, welfare losses show up for θ > 1, ranging from

about −0.5% for θ = 2 to −14.5% for θ = 4. For weak risk attitudes (θ = 1),

higher-order risk leads to welfare gains (CEV of 0.4%). The latter results from

the fact that we consider mean-preserving changes of risk: a mean-preserving

increase (in absolute terms) of the negative third central moment implies an

increase of the mean in logs, and under log utility this translates into welfare

gains. We formalize this in Proposition 1 in Appendix A.3.

In order to understand the mechanism behind the welfare effect, we next

decompose the CEV into three components. When facing different income

risk, households make different savings decisions (depending on their risk at-

titudes). The first consequence of this is potentially different (overall) mean

consumption, i.e., consumption averaged cross-sectionally and over age. We

call the welfare consequence of this change of mean consumption the mean

effect, gmean
c . The remaining welfare effect stems from a change of the distri-

bution around this mean (and we refer to this welfare component as the dis-

tribution effect, gdistrc ).

The change of the distribution consists of two components. First, a change

over age: the profile of average consumption over the life-cycle changes, which

27



Table 3: Welfare Effects of (Cyclical) Idiosyncratic Risk

gc gmean
c glcdc gcsdc ∆gcrc

Risk Aversion, θ = 1
NORM→LKSW 0.384 -0.112 0.482 0.015 -
NORM: cyclical risk -1.918 0.360 -2.142 -0.136 -
LKSW: cyclical risk -1.620 0.289 -1.793 -0.116 0.298

Risk Aversion, θ = 2
NORM→LKSW -0.504 -0.106 -0.365 -0.033 -
NORM: cyclical risk -3.622 0.651 -3.998 -0.274 -
LKSW: cyclical risk -3.943 0.605 -4.261 -0.287 -0.321

Risk Aversion, θ = 3
NORM→LKSW -5.193 0.270 -5.085 -0.378 -
NORM: cyclical risk -5.106 0.894 -5.594 -0.406 -
LKSW: cyclical risk -8.128 1.027 -8.514 -0.641 -3.022

Risk Aversion, θ = 4
NORM→LKSW -14.450 0.957 -14.153 -1.254 -
NORM: cyclical risk -6.373 1.108 -6.961 -0.520 -
LKSW: cyclical risk -13.976 1.460 -14.196 -1.240 -7.603

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order
income risk, expressed as a Consumption Equivalent Variation (CEV) in percentages in
scenario NORM that makes households indifferent to the higher-order income risk sce-
nario LKSW. Also: CEV in the non-cyclical scenario that makes households indifferent to
the cyclical scenario. gc: total CEV, gmean

c : CEV from changes of mean consumption,
glcdc : CEV from changes of consumption over the life-cycle, gcsdc : CEV from changes in the
cross-sectional distribution, where gc = gmean

c + glcdc + gcsdc . ∆gcrc = gLKSW,cr
c − gNORM,cr

c .

gives rise to a life-cycle distribution effect, glcdc . Second, at a given age, the

cross-sectional distribution of consumption around the age-specific average

changes, which gives rise to a cross-sectional distribution effect, gcsdc . The

overall CEV is the sum of the three components: gc = gmean
c + glcdc + gcsdc (cf.

Appendix A.2 for explicit expressions), which are shown in columns two to

four of Table 3.

The dominant channel behind the welfare results turns out to be the differ-

ent life-cycle consumption profile reflected in glcdc . Driven by the precautionary

savings motive, young households choose lower consumption when facing sce-

nario LKSW compared to scenario NORM. The average life-cycle consumption
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profiles under the two scenarios are shown in Panel (a) of Figure 4.25 In welfare

terms, lower young-age consumption dominates higher old-age consumption

due to discounting. For θ = 3 and θ = 4, the mean effect gmean
c is positive

because higher old-age consumption dominates.

Figure 4: Central Moments of Log Consumption by Age (θ = 4)

(a) Mean (b) Variance

(c) Third Central Moment (d) Fourth Central Moment

Notes: Moments of cross-sectional distribution of log consumption over the life-cycle under
scenarios NORM and LKSW.

Panels (b) to (d) of Figure 4 show the second to fourth cross-sectional

central moments of the consumption distribution over the life-cycle, which are

responsible for the cross-sectional distribution effect gcsdc . To interpret it note

that the variance is lower in scenario LKSW than in scenario NORM for most
25The corresponding asset profile is shown in Appendix C.3. Qualitatively, effects are

the same in the other calibrations of θ. Consumption is monotonically increasing due to a
strong life-cycle savings motive; we address this in Section 4.5.
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ages, whereas the third central moment is initially negative and the fourth

central moment is higher at all ages.26 Lower variance contributes positively

to gcsdc , which dominates for weaker risk attitudes, whereas the more negative

third and higher fourth central moment contribute negatively, which dominates

for stronger risk attitudes.

Decomposing Moments. In Appendix D.2 we analyze an additional dis-

tribution scenario, which features symmetric (in logs) shocks with the excess

kurtosis of LKSW. For calibration θ = 4, the welfare costs are 10.9% (see Ta-

ble D.2), which implies that the kurtosis accounts for about 75% of the welfare

costs of higher-order risk, and thus skewness accounts for about 25%.

4.3 Welfare Costs of Cyclical Idiosyncratic Risk

Second, we quantify the utility consequences of cyclical idiosyncratic risk un-

der the different scenarios. For each i ∈ {NORM,LKSW}, let W i,ncr denote

the social welfare function in a (counterfactual) no cyclical risk scenario, in

which we shut down the cyclical variation of the shock distributions. We then

compute the CEV that makes households in this counterfactual scenario ex

ante indifferent to being born into the (actual) scenario with cyclical risk,

gi,crc = W i/W i,ncr−1. By holding mean wages and interest rates constant over

the cycle, the welfare effects of cyclical risk we report constitute a lower bound

for each scenario.27

26The Gini coefficient for assets for a risk aversion of 4 is at 0.36 in scenario NORM, and
at 0.34 in scenario LKSW: the introduction of higher-order income risk does not increase
the Gini coefficient in a quantitative model such as ours. Also, note that the Gini coeffi-
cient in our calibrated model is substantially lower than in the data and also lower than
what is typically found in quantitative work; e.g., Krueger and Ludwig (2016) compute a
Gini coefficient of assets of 0.55 in an overlapping generations model calibrated to the US
economy. Main reason for the relatively modest asset inequality lies in our focus on ex-post
heterogeneity. In our alternative KV-calibration the Gini coefficient for assets is 0.50 under
scenario NORM and 0.38 under scenario LKSW.

27Note that the direct effect of business cycles is typically found to be small. For example,
Storesletten et al. (2001) find the direct effect to be an order of magnitude smaller than
the role of cyclical variation in idiosyncratic risk. However, there can be indirect utility
“interactions” between aggregate and idiosyncratic risk, which may be large (Harenberg and
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When shutting down cyclicality we assume that households always draw

from the expansion-distribution of the scenario. When using log-Normal distri-

butions of shocks, one approach in the literature is to consider an average dis-

tribution, which features the average of expansion and contraction variances,

see for example Storesletten et al. (2001). This approach is not applicable in

our analysis as it is conceptually not clear what characterizes such an average

distribution once other moments than the variance are taken into account. To

the extent that some average distribution represents a better non-cyclical coun-

terfactual scenario, the pure effect of cyclical idiosyncratic risk is overstated in

our analysis.28 However, we are mainly interested in the difference of welfare

costs of cyclical income risk across scenarios, i.e., the difference-in-difference

comparison between gLKSW,cr
c and gNORM,cr

c , i.e., ∆gcrc = gLKSW,cr
c − gNORM,cr

c .

Thus, our approach to shutting down cyclicality of idiosyncratic risk is of

second-order importance as it is consistent across scenarios.29

Table 3 reports the resulting overall welfare costs of cyclical idiosyncratic

risk in scenarios NORM and LKSW, and the decomposition of the total

CEV into its components for each calibration of θ. In both scenarios i ∈
{NORM,LKSW} we observe that, first, the welfare costs of business cy-

cles, gi,crc , increase monotonically in θ. Second, the effect is dominated by

the life-cycle distribution effect gi,cr,lcdc , which reflects the change of the mean

consumption profile over age: agents face higher risk to which they respond

by increasing savings early in the life-cycle. Third, higher savings increase

expected consumption in the middle of the life-cycle, which pushes up overall

mean consumption and is reflected in a positive mean effect gi,cr,mean
c .

Ludwig 2019), and which we abstract from in order to focus on the role of the idiosyncratic
shock distribution.

28In one of our sensitivity checks in Appendix D.3, we consider CRRA preferences with θ =
2, and in scenario NORM obtain welfare costs of about 2.9%. With the same specification
for preferences, Storesletten et al. (2001) find welfare costs of cyclical (Gaussian) risk of
about 1.3%. Besides other differences between our model and theirs, one reason for the
higher welfare costs in our analysis lies in the different approach to characterizing the non-
cyclical scenario.

29One alternative is to follow the “integrating out” principle (see Krusell and Smith 1999
and Krusell et al. 2009), which first isolates a true idiosyncratic component of the shock,
and then integrates over the probability distribution of the aggregate state.
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Consistent with the previous result that with logarithmic utility the total

welfare effect from higher-order income risk is positive, we now find that welfare

losses from cyclical idiosyncratic risk are about 0.3 percentage points lower in

scenario LKSW. Similarly, with moderate risk attitudes (risk aversion of 2),

the welfare losses of cyclical income risk in scenario LKSW are only mildly

higher than those obtained in scenario NORM. With strong risk attitudes

(θ = 4), the welfare losses are significantly (about 7.6 percentage points) higher

in scenario LKSW compared to scenario NORM. Thus, the welfare effects of

cyclical risk are strongly underestimated in conventional approaches based on

Gaussian distributions of innovations if risk attitudes are strong.

Decomposing Moments. In the calibration with θ = 4, welfare costs of

cyclical risk are about 4.9 percentage points higher in the distribution scenario

with excess kurtosis but zero skewness than in scenario NORM (see Table D.2).

Combined with the lower part of Table 3 we thus find that of the differential

welfare losses from higher-order risk approximately 64%(≈ 4.885/7.608 ·100%)

are due to the excess kurtosis and the remaining 36% are due to the left-

skewness of shocks.

4.4 Self-Insurance and the Propensity to Consume

We extensively used the concept of increased precautionary savings—i.e., self-

insurance—in response to higher-order risk to explain the ex-ante welfare ef-

fects that largely stem from reduced consumption at early ages. Now, we study

how this translates into measures of self-insurance against income shocks xj(s) ∈
{εj, ηj(s)}. We start by employing a measure of consumption insurance as in-

troduced in the empirical literature by Blundell et al. (2008), which is based

on estimating the pass-through of shocks to consumption adjustments. As

all shocks are observed within the model, we calculate the model-consistent

insurance coefficient following Kaplan and Violante (2010).30

30Thus, we do not consider the extent to which an empirical measure is valid, given
that shocks are not observed in observational data and need to be extracted using some
identifying assumptions, as discussed in, e.g., Blundell et al. (2008), Kaplan and Violante
(2010), or Commault (2022).
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Conditional on aggregate state s and age j, the pass-through coefficient 1−
ϕx
j (s) is the coefficient of a linear regression of consumption growth on shock x:

1− ϕx
j (s) =

cov(∆ ln (cj+1(s
′ | s)) , xj+1(s

′))

var(xj+1(s′))
, (16)

where ∆ ln (cj(s
′ | s)) = ln (cj+1(s

′ | s)) − ln (cj(s)), and ϕx
j (s) denotes the

insurance coefficient.

Figure 5 reports the insurance coefficients ϕx
j for all ages j ∈ {0, . . . , J}, as

a weighted average of the coefficients in contractions and expansions (using the

stationary invariant distribution Πs), for the transitory shock ε in Panel (a) and

for the persistent shock η(s) in Panel (b). Results are quantitatively similar

for different values of risk attitudes, so we focus on θ = 4. In the first column

of Table 4, we report the pass-through aggregated over age. All in all, in

scenario LKSW, consumption insurance against both transitory and persistent

shocks as measured by the ϕ-coefficients is higher than in scenario NORM. This

is in line with results presented in De Nardi et al. (2020).

Figure 5: Insurance Coefficients: Strong Risk Attitudes, θ = 4

(a) Transitory Shock (b) Persistent Shock

Notes: Figures show the degree of consumption insurance against transitory and persistent
shocks separately by age.

One part of the higher insurance coefficient is explained directly by higher

precautionary savings, which imply a lower pass-through of income gains to

consumption, as we discuss in Section 2.1 for the two-period setting. In
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order to explore whether the higher insurance coefficient represents better

insurance against income losses, we consider the following decomposition,

which captures the contribution of consumption comovement with positive

and negative shocks, respectively, to the aggregate pass-through coefficient for

shock x ∈ {η, ε}:

1− ϕx =
E [∆ ln(c(·))x]− E [∆ ln(c(·))]E [x]

var(x)
= (17)

π− · E [∆ ln(c(·))x|x < 0]

var(x)︸ ︷︷ ︸
Ax

+ π+ · E [∆ ln(c(·))x|x > 0]

var(x)︸ ︷︷ ︸
Bx

− E [∆ ln(c(·))]E [x]

var(x)︸ ︷︷ ︸
Cx

.

The terms π− and π+ are short for the probabilities of the shock being neg-

ative or positive, respectively. The decomposition of the aggregate coefficient

expressed as shares is shown in Table 4 for θ = 4 (in Appendix Table D.4

we show the same table for θ = 2; the other calibrations of θ yield the same

patterns). In scenario NORM, the comovement of consumption changes with

negative transitory shocks plays only a negligible role (−1.4%) for the overall

pass-through coefficient. On the other hand, in scenario LKSW, the (nega-

tive) consumption reaction to negative transitory shocks accounts for sizable

30.3% of the pass-through coefficient. A possible rationalization is that built-

up savings do not suffice to smooth out the negative shocks in scenario LKSW

as well as they do in scenario NORM. The non-zero third term in the de-

composition follows from the normalization in levels, which implies a non-zero

mean of the shocks in logs (which is larger in scenario LKSW than in scenario

NORM). Turning to persistent shocks, in scenario NORM, 40.9% of the pass-

through is accounted for by consumption reductions in response to negative

shocks, while 57.6% come from consumption increases with positive shocks. A

larger fraction (52.3%) of the overall smaller pass-through is accounted for by

consumption reductions in response to negative shocks in scenario LKSW.

The last two columns of Table 4 show pass-through coefficients conditional

on the sign of the shocks. For example, 1− ϕε|ε− = cov(∆ ln(c(·)),ε|ε<0)
var(ε|ε<0)

, and like-
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Table 4: Aggregate Pass-Through and its Decomposition, θ = 4

components of 1− ϕ: conditional 1− ϕ:

Transitory: 1− ϕε π−Aε

1−ϕε
π+Bε

1−ϕε
Cε

1−ϕε 1− ϕε|ε− 1− ϕε|ε+

NORM 0.051 -0.014 0.883 0.131 0.041 0.063
LKSW 0.045 0.303 0.525 0.172 0.030 0.090

Persistent: 1− ϕη π−Aη

1−ϕη
π+Bη

1−ϕη
Cη

1−ϕη 1− ϕη |η− 1− ϕη |η+

NORM 0.448 0.409 0.576 0.015 0.463 0.494
LKSW 0.402 0.523 0.454 0.023 0.350 0.511

Notes: Column 1 shows the aggregate consumption pass-through coefficient, columns 2-4 its
decomposition into components according to equation (17), expressed as shares of total pass-
through. π− and π+ are short for the probabilities of the shock being negative or positive.
Columns 5 and 6 show conditional pass-through coefficients for negative and positive shocks.

wise for positive shocks and for η. For both transitory and persistent shocks,

under scenario LKSW the conditional pass-through is larger for positive shocks

and smaller for negative shocks, compared to scenario NORM.31

To further interpret these findings, note that the decomposition captures

three effects. First, the shock distributions differ, and thus do the probabilities

of positive and negative shocks, and the (typical) size of the shocks of either

sign. Second, the equilibrium asset distribution is different—and the amount

of assets matters for the optimal consumption-savings choice. Third, for a

given amount of assets, the reaction to a shock of the same magnitude is

different.

For better comparability across distribution scenarios, we now first turn to

the marginal propensity to consume, defined as the slope of the consumption

function. Table 5 reports the average MPC for different levels of risk attitudes.

It turns out that the aggregate marginal consumption response is somewhat

larger in scenario LKSW.

Next, in Table 6 we consider explicitly the consumption response to tran-

sitory and persistent shocks of different signs, and of three sizes. Small shocks

31Comparison of the coefficients is not straightforward as the conditional variance of the
shocks changes. Consider negative transitory shocks: under scenario NORM the conditional
covariance of shocks with consumption changes is 0.0009, while it is an order of magnitude
larger (0.0085) under LKSW, which displays a larger conditional variance of negative shocks.
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Table 5: Marginal Propensity to Consume

Risk Aversion
θ = 1 θ = 2 θ = 3 θ = 4

NORM 0.0390 0.0410 0.0433 0.0461
LKSW 0.0390 0.0417 0.0463 0.0529

Notes: MPC is calculated as the slope of the consumption policy function. Reported value

aggregates over the distribution of households (over age, income, and assets).

are defined as one standard deviation of the persistent shock (0.11 based on

the weighted variances in expansions and contractions); medium shocks as one

standard deviation of the transitory shock (0.22), and large shocks as twice

that (0.44). For both transitory and persistent shocks we show the consump-

tion reaction to a shock of a given sign and size for households with age-specific

average income and the (baseline) asset holdings from the LKSW calibration,

aggregated over age.32 Thus, the difference between NORM and LKSW rep-

resents changes in the policy function. For transitory shocks, we find that the

propensity to consume is larger in scenario LKSW, reflecting the somewhat

larger MPC mentioned already. In particular, negative shocks (of the same

size) translate somewhat more strongly into consumption reductions than in

scenario NORM. For persistent shocks, the consumption responses are weaker

in scenario LKSW compared to scenario NORM. The reason for this direction

of the effect is that for persistent shocks the precautionary savings motive is

more pronounced. As we discussed in Section 2.1, a stronger savings motive

reduces the propensity to consume out of a given shock.33

Summing up, for both transitory and persistent shocks, we observe a

smaller pass-through (increase of the insurance coefficient) in scenario LKSW

than in scenario NORM. In the case of the persistent shock this is driven by a

reduced propensity to consume, and in this sense reflects better insurance. In

32Ghosh and Theloudis (2023) estimate a non-linear consumption function on biannual
PSID data and find patterns of the propensity to consume over shock sign and size that
qualitatively resemble our model patterns.

33Considering the propensity to consume out of a persistent shock in the two-period
framework, one can show that there is an additional term added to (3) which increases in
the persistence of the shock; results are available upon request.
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Table 6: Propensity to Consume (θ = 4)

negative shocks positive shocks
small medium large small medium large

Transitory: NORM 0.0460 0.0460 0.0460 0.0460 0.0459 0.0459
LKSW 0.0528 0.0530 0.0533 0.0525 0.0523 0.0519

Persistent: NORM 0.3991 0.4026 0.4045 0.3914 0.3868 0.3704
LKSW 0.3847 0.3889 0.3981 0.3800 0.3748 0.3594

Notes: Propensity to consume out of a given shock. The reported numbers are evaluated

at the mean asset profile over age from scenario LKSW.

the case of transitory shocks, however, negative shocks actually translate more

into consumption, which is also reflected in a higher MPC. The reduction of

the pass-through therefore does not reflect better insurance against a same-size

shock for an observationally equivalent household. Thus, the simple aggregate

insurance coefficient based on comovements of shocks and consumption is an

imprecise measure of insurance, if one plausibly has in mind that better in-

surance means that negative shocks translate less into consumption—and that

this is what should be reflected by a larger value of an insurance coefficient.

Decomposing Moments. Table D.3 shows that the difference between sce-

narios NORM and LKSW of the relative importance of positive and nega-

tive shocks for the overall pass-through is driven by the introduction of left-

skewness—under scenario LK the shares are very close to scenario NORM.

4.5 Alternative Calibrations

We start by considering the alternative calibration a la Kaplan and Violante

(2010) (KV-calibration), where we set initial assets to zero, and calibrate the

discount factor targeting an aggregate capital-output ratio of 2.5. Relative

to our baseline calibration, the endogenously calibrated discount rate now ex-

ceeds the (exogenous) interest rate, cf. Table 2, which in isolation would lead

to a consumption profile negatively sloped over age. As households engage in

precautionary savings, they save when young to build up a buffer against nega-
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tive income risk. Together, the two forces lead to a hump-shaped consumption

profile (see Figure D.2 and the corresponding asset profile in Figure C.3).

Table 7 summarizes the results of the two welfare analyses for θ = 2 and

θ = 4. For each value of θ, the first row shows the welfare costs of higher-order

risk, which turn out substantially higher under the KV-calibration. In order to

insure themselves against the higher risk in scenario LKSW, households save

relatively much at young ages, which tilts the average consumption profile com-

pared to the one in scenario NORM. The difference between the two profiles

is stronger than in our baseline calibration, which is driven by (exogenously

set) zero initial assets and an (endogenously determined) higher discount rate.

This interpretation is further supported by investigating the fraction of bor-

rowing constrained households. In the baseline calibration, this fraction is

basically zero in both risk scenarios with high risk attitudes of θ = 4. In the

KV calibration of scenario NORM with a risk aversion of θ = 4, about 16%

of households are initially (at biological age 25) borrowing constrained. In

scenario LKSW, this fraction is substantially lower, at about 1% only, because

households face higher risk which induces them to save more. The worse out-

comes at young ages are crucial given the ex-ante perspective on welfare and

the higher discount rate.

The remaining rows in Table 7 show the welfare costs of cyclical idiosyn-

cratic risk in scenarios NORM and LKSW under the KV-calibration. Qualita-

tively the results mimic the baseline calibration, and differences in magnitude

are driven by the same mechanisms as described for the overall welfare costs.

We next analyze the aggregate measure of (self-)insurance against idiosyn-

cratic risk. We again focus on the results for θ = 4, as there is no relevant

variation across different values of risk attitudes. The pass-through coefficient,

shown in Table 8, is smaller in scenario LKSW relative to scenario NORM for

both transitory and persistent shocks. A smaller fraction of the lower pass-

through is accounted for by consumption increases in response to positive

shocks, which is again in line with increased precautionary savings.

Table 9 reports the propensity to consume out of transitory and persistent

shocks of different sign and magnitude (11, 22, and 44 log points). We evaluate
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Table 7: Welfare Analysis in KV-Calibration

gc gmean
c glcdc gcsdc ∆gcrc

Risk Aversion, θ = 2
NORM→LKSW -4.008 0.329 -4.075 -0.262 -
NORM: cyclical risk -2.472 0.898 -3.288 -0.082 -
LKSW: cyclical risk -4.397 1.088 -5.406 -0.079 -1.925

Risk Aversion, θ = 4
NORM→LKSW -25.553 2.563 -27.540 -0.576 -
NORM: cyclical risk -3.081 1.315 -4.269 -0.127 -
LKSW: cyclical risk -16.958 2.170 -18.666 -0.462 -13.877

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order
income risk, expressed as a Consumption Equivalent Variation (CEV) in percentages in
scenario NORM that makes households indifferent to the higher-order income risk sce-
nario LKSW. Also: CEV in the non-cyclical scenario that makes households indifferent to
the cyclical scenario. gc: total CEV, gmean

c : CEV from changes of mean consumption,
glcdc : CEV from changes of consumption over the life-cycle, gcsdc : CEV from changes in the
cross-sectional distribution, where gc = gmean

c + glcdc + gcsdc . ∆gcrc = gLKSW,cr
c − gNORM,cr

c .

the consumption responses at the age-specific mean asset holdings under the

KV calibration in scenario LKSW. We find that the consumption response to

transitory shocks is stronger in scenario LKSW than in scenario NORM, while

the aggregate consumption response to persistent shocks is weaker. These

differences are more pronounced than in the baseline calibration.

Table 8: KV-Calibration—Aggregate Pass-Through and Decomposition, θ = 4

components of 1− ϕ: conditional 1− ϕ:

Transitory: 1− ϕε π−Aε

1−ϕε
π+Bε

1−ϕε
Cε

1−ϕε 1− ϕε|ε− 1− ϕε|ε+

NORM 0.101 0.562 0.445 -0.007 0.100 0.106
LKSW 0.081 0.558 0.383 0.058 0.058 0.146

Persistent: 1− ϕη π−Aη

1−ϕη
π+Bη

1−ϕη
Cη

1−ϕη 1− ϕη |η− 1− ϕη |η+

NORM 0.620 0.529 0.472 -0.001 0.657 0.666
LKSW 0.499 0.563 0.425 0.011 0.450 0.602

Notes: Column 1 shows the aggregate consumption pass-through coefficient, columns 2-4 its
decomposition into components according to equation (17), expressed as shares of total pass-
through. π− and π+ are short for the probabilities of the shock being negative or positive.
Columns 5 and 6 show conditional pass-through coefficients for negative and positive shocks.
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Table 9: KV-Calibration—Propensity to Consume (θ = 4)

negative shocks positive shocks
small medium large small medium large

Transitory: NORM 0.0782 0.0796 0.0885 0.0753 0.0743 0.0727
LKSW 0.0990 0.1002 0.1022 0.0970 0.0959 0.0936

Persistent: NORM 0.5722 0.5773 0.5809 0.5607 0.5540 0.5298
LKSW 0.5042 0.5094 0.5204 0.4974 0.4913 0.4735

Notes: Propensity to consume out of a given shock. The numbers are evaluated at the mean

asset profile over age from scenario LKSW in KV calibration.

In Appendix D.3 we further decompose differences between the baseline and

the KV-calibrations. We also explore robustness with respect to the prefer-

ence specification by considering CRRA utility—stronger risk attitudes θ now

simultaneously imply a lower IES γ. Our calibration then determines a lower

discount rate because that second effect turns out to be the dominant force for

asset accumulation. Consequently, the future is valued more in both scenarios

NORM and LKSW and therefore, for θ > 1, the welfare effects of higher-order

risk are lower. This finding underscores the importance of disentangling risk

attitudes from inter-temporal preferences. Also, we consider a version of the

baseline where we recalibrate the discount rate for scenario NORM and find

that our results are very little affected.

5 Conclusion

We estimate an income process that extends the canonical one by higher-order

risk of transitory and persistent shocks. Our estimates on PSID household

income imply that persistent shocks exhibit countercyclical variance and a

procyclical third central moment. All shocks exhibit excess kurtosis.

Within an otherwise standard partial equilibrium life-cycle model with in-

complete markets, first, higher-order risk has important welfare consequences

relative to a world with log-Normal shocks. Second, the presence of higher-

order risk matters for the welfare costs of business cycles. Third, higher-
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order risk affects the measured degree of consumption self-insurance and the

(marginal) propensity to consume. A natural follow-up analysis pertains to

the empirical exploration of consumption moments over the life cycle and how

a structural model such as ours matches those.
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