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A.1 Derivation of Equations (1)–(3)

Consider an exact Taylor series expansion of u(c1) around c1 = E[y1]:

u(c1) =
∞∑
k=0

u(k)(E[y1])
k!

(y1 − E[y1])k.

Now take the expectation of this expression over y1:

E[u(c1)] = E

[
∞∑
k=0

u(k)(E[y1])
k!

(y1 − E[y1])k
]
.

Linearity of the expectation operator implies that the expected value of the sum is the sum

of the expected values and thus we obtain

E[u(c1)] =
∞∑
k=0

u(k)(E[y1])
k!

E[(y1 − E[y1])k].

With the definition of the k’th central moment as µy1
k = E[(y1 − E[y1])k] we thus obtain the

expression used in Equation (1):

E[u(c1)] =
∞∑
k=0

u(k)(E[y1])
k!

µy1
k .

In the same fashion, in Equation (2) we use a Taylor series expansion of E[u(1)(c1)] around

c1 = E[y1] + a1. Note that this is done for a given choice of a1, which hence is a constant

when taking the Taylor series expansion. Going through the same steps as above, we first

obtain:

u(1)(c1) =
∞∑
k=0

u(k+1)(E[y1] + a1)

k!
(y1+a1−(E[y1]+a1))

k =
∞∑
k=0

u(k+1)(E[y1] + a1)

k!
(y1−E[y1])k.
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Then, take expectations to obtain the expression used in Equation (2):

E[u(1)(c1)] = E

[
∞∑
k=0

u(k+1)(E[y1] + a1)

k!
(y1 − E[y1])k

]
=

∞∑
k=0

u(k+1)(E[y1] + a1)

k!
µy1
k .

Next, turn to Equation (2) again, take the total derivative with respect to y0, and set it

equal to zero:

df

dy0
=
d
(
u(1)(y0 − a1)− E[u(1)(y1 + a1)]

)
dy0

!
= 0

⇔u(2)(y0 − a1)

(
1− ∂a1

∂y0

)
− E

[
u(2)(y1 + a1)

] ∂a1
∂y0

= 0

⇔u(2)(y0 − a1) =
∂a1
∂y0

(
u(2)(y0 − a1) + E

[
u(2)(y1 + a1)

])
⇔1 =

∂a1
∂y0

(
1 +

E
[
u(2)(y1 + a1)

]
u(2)(y0 − a1)

)

⇔∂a1
∂y0

=

(
1 +

E
[
u(2)(y1 + a1)

]
u(2)(y0 − a1)

)−1

.

This gives the expression for the MPS used in Equation (3). Finally, in the discussion of

Equation (3), we again take a Taylor series expansion:

u(2)(y1+a1) =
∞∑
k=0

u(k+2)(E[y1] + a1)

k!
(y1+a1−(E[y1]+a1))

k =
∞∑
k=0

u(k+2)(E[y1] + a1)

k!
(y1−E[y1])k.

Taking expectations we get:

E
[
u(2)(y1 + a1)

]
= E

[
∞∑
k=0

u(k+2)(E[y1] + a1)

k!
(y1 − E[y1])k

]

=
∞∑
k=0

u(k+2)(E[y1] + a1)

k!
E
[
(y1 − E[y1])k

]
=

∞∑
k=0

u(k+2)(E[y1] + a1)

k!
µy1
k .

A.2 Decomposition of Consumption Equivalent Variations

Recall that for a given shock scenario i ∈ {NORM,LKSW}, the welfare function is de-

fined as the certainty equivalent of entering the economy with asset holdings a, and then

optimally choosing consumption and savings in every period when facing shock scenario i.
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Before splitting it up into different components, we briefly repeat the derivation of the CEV

here. We denote the resulting stochastic consumption stream by ci(a), which gives optimal

consumption at every age for every possible history conditional on starting out with assets a.

The welfare function is W i (ci(a)) = ν (V i
0 (a, z, ε; s)), where

v(V0(a, z, ε; s)) =


(
E−1

[
V0(a, z, ε; s)

1−θ
]) 1

1−θ θ ̸= 1

exp (E−1 [lnV0(a, z, ε; s)]) otherwise,

where the expectation is taken over z = η, ε, s. The overall consumption equivalent varia-

tion (CEV), gc, that makes households in scenario NORM indifferent to scenario LKSW, is

obtained by

WLKSW
(
cLKSW (a = ā0)

)
= WNORM

(
(1 + gc)c

NORM(a = ā0)
)
,

which gives

1 + gc =
WLKSW

(
cLKSW (a = ā0)

)
WNORM (cNORM(a = ā0))

. (A.1)

We split this overall welfare effect into three components. First, we decompose the

CEV into a mean and a distribution effect. The mean effect is the welfare effect stemming

from changes in average consumption and the distribution effect captures changes in the

distribution of consumption. Formally, expected average consumption over the life cycle of

some cohort is obtained as

E[ci] =
1

J + 1

J∑
j=0

∫
cij(aj, zj, εj; s)dΦ

i
j(aj, zj, εj; s)

for i ∈ {NORM,LKSW}, where cij(aj, zj, ε; s) denotes the consumption policy function

in distribution i and Φi
j(aj, zj, εj; s) is the cross-sectional distribution. In the above equa-

tion and the exposition below we sometimes drop the explicit dependence of the stochastic

consumption sequence on the initial assets a = ā0 for notational convenience.

Denote by δLKSW
c = E[cLKSW ]

E[cNORM ]
− 1 the percentage difference of average consumption

between scenarios NORM and LKSW. We then scale the consumption path cLKSW by

this average difference to obtain a consumption path adjusted for the mean difference:

cLKSW
adj = cLKSW/(1 + δLKSW

c ). The resulting difference between the paths cLKSW
adj and
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cNORM gives the welfare effect due to differences in the distribution around the mean:

WLKSW
(
cLKSW
adj (a = ā0)

)
= WNORM

(
(1 + gdistr.c )cNORM(a = ā0)

)
,

which gives

WLKSW
(
cLKSW (a = ā0)/(1 + δLKSW

c )
)
= WNORM

(
(1 + gdistr.c )cNORM(a = ā0)

)
and thus we obtain

1 + gdistr.c =
1

1 + δLKSW
c

WLKSW
(
cLKSW (a = ā0)

)
WNORM (cNORM(a = ā0))

=
1 + gc

1 + δLKSW
c

. (A.2)

The mean effect is accordingly

gmean
c = gc − gdistr.c =

1 + gc
1 + δLKSW

c

δLKSW
c . (A.3)

The distribution effect itself captures two changes. The first reflects the utility difference

stemming from the change of the average life-cycle consumption profile, which we refer to as

the life-cycle distribution effect. The second captures the utility change stemming from the

change of the cross-sectional distribution of stochastic second period consumption, which we

accordingly refer to as the cross-sectional distribution effect. Thus, we write gdistr.c as

gdistr.c = glcdc + gcsdc (A.4)

for the CEV stemming from the life-cycle redistribution (lcd) and cross-sectional distribution

(csd) effect.

To obtain the cross-sectional distribution effect we correct the stochastic consumption

path cLKSW for the age-specific percentage difference to cNORM . Denote the latter by δLKSW
c,j =

E[cLKSW |j]
E[cNORM |j] − 1. Adjusting the consumption plan accordingly we get cLKSW

age−adj where for every

age j the consumption plan cLKSW
age−adj,j = cLKSW

j /(1 + δLKSW
c,j ). Accordingly, we get

1 + gcsdc =
WLKSW

(
cLKSW
age−adj(a = ā0)

)
WNORM (cNORM(a = ā0))

. (A.5)

Once we have obtained gcsdc , we directly get glcdc from (A.4) as glcdc = gdistr.c − gcsdc . Note

that if δLKSW
c,j = δLKSW

c ∀j, i.e., if the behavioral response to higher-order risk yields a

parallel shift of the mean consumption life-cycle profile, (A.5) implies that gcsdc = gdistr.c (and

accordingly glcdc = 0). Thus, the life-cycle distribution effect indeed reflects the welfare effect

4



due to a tilting of the mean life-cycle consumption profile.

A.3 Logs vs. Levels

While the transformation from logs to levels is natural, it has non-trivial implications for the

welfare effects of higher-order risk: the higher-order moments of the shocks in levels rather

than of the shocks in logs. Consider a version of the two-period framework from Section 2.1

(agents live in periods 0 and 1 and face risky second period income) with log-utility as per-

period utility function. Again, let y0 and y1 denote income in the two periods. Consider a

mean preserving (thus E[y1] = 1) change of period 1 income risk. When introducing left-

skewness in logs, probability mass is shifted to the left, which reduces the variance of the

shocks in levels. Without adjustment, by Jensen’s inequality for convex functions the mean

of the distribution in levels would be lower, so to preserve the mean, the distribution needs

to be shifted up, which increases the mean in logs. Similarly, a higher variance or higher

kurtosis of the distribution in logs increases the variance in levels. Without adjustment, the

fanning out of the support of shocks in logs increases the mean of the distribution in levels by

Jensen’s inequality for convex functions. In order to preserve the mean the distribution needs

to be shifted down, which reduces the mean in logs. Since with log utility and in absence of

a savings technology, expected life-time utility is U = ln(y0) + E[ln(y1)], solely the mean of

the distribution in logs matters for life-time utility and thus a mean-preserving reduction of

skewness leads to utility gains. Likewise, a mean-preserving increase of variance or kurtosis

leads to utility losses in expectation. We summarize this below in Proposition 1. While the

finding may appear counter-intuitive at first glance, the reason is the transformation of the

shocks from logs, which are typically modelled and estimated, to levels, which eventually

matters for welfare.1

Proposition 1. Suppose that the utility function is logarithmic and that there is no savings

technology (a1 = 0). Then a mean-preserving reduction of skewness (‘more negative skew-

ness’) leads to utility gains, whereas a mean-preserving increase of variance or kurtosis leads

to utility losses in expectation.

1Due to this re-transformation our findings are related to, but not the same, as first-order stochastic
dominance, see Rothschild and Stiglitz (1970, 1971). Stochastic dominance refers to random variables in
levels, in our case y1. Obviously, increasing the variance (or kurtosis) of y1, while holding the mean constant
at E[y1] = 1, has direct negative utility consequences. In this case utility is U = ln(y0)+E[ln(y1)], which for
the maintained normalization E[y1] = 1 we could approximate as

U ≈ ln(y0)−
1

2
µy1

2 +
1

3
µy1

3 − 1

4
µy1

4

from which the utility effects of increasing the variance or the kurtosis or decreasing the skewness are
obviously all negative.
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Proof. Let EΨ[ln(y1)] =
∫
ln(y1)dΨ, µ

ln(y1)
k =

∫
(ln(y1)− EΨ[ln(y1)])

k dΨ for k > 1, and let

EΨ[y1] = 1, where Ψ(·) denotes some distribution function. Now consider the following three

steps.

(i.) Denote by Ψ̃δk(ln(y1)) a distribution function that is obtained from Ψ(ln(y1)) by

changing central moment µy1
k , while holding the mean constant, i.e., EΨ̃δk [ln(y1)] = EΨ[ln(y1)].

(ii.) Consider a mean-preserving change of the distribution, which combines the change

from Ψ(·) to Ψ̃δk(·) with a shift ∆δk such that EΨ̃δk [exp(ln(y1)+∆δk)] = EΨ[exp(ln(y1))] = 1.

The normalization 1 = EΨ̃δk [exp(ln(y1)+∆δk)] =
∫
exp(ln(y1)+∆δk)dΨ̃δk = exp(∆δk)

∫
y1dΨ̃

δk

implicitly defines ∆δk = − ln
(∫

y1dΨ̃
δk

)
.

(iii.) Thus, when facing distribution Ψ(ln(y1)), the expected income in log terms is EΨ[ln(y1)],

and when facing distribution Ψ̃δk(ln(y1)) together with the mean-preserving shift ∆δk , the

expected income in log terms is EΨ̃δk [ln(y1) + ∆δk ] = EΨ̃δk [ln(y1)] + ∆δk = EΨ[ln(y1)] + ∆δk .

The last equality follows from (i.). With logarithmic utility and binding budget constraint,

the expected utility difference across distributions Ψ and Ψ̃δk is thus ∆U = (U | Ψ̃δk)− (U |
Ψ) = ∆δk .

We then get the following:

� Shifting probability mass from the center to the tails, either by increasing the vari-

ance (k = 2) or kurtosis (k = 4), increases
∫
y1dΨ̃

δk above one, which follows from

Jensen’s inequality for convex functions. Thus ∆δk = − ln
(∫

y1dΨ̃
δk

)
< 0.

� Shifting probability mass from the right tail to the left tail decreasing the skew-

ness (k = 3)—i.e., making the distribution more left-skewed—decreases
∫
y1dΨ̃

δk be-

low one, which follows from Jensen’s inequality for convex functions. Thus ∆δk =

− ln
(∫

y1dΨ̃
δk

)
> 0.

B Additional Empirics

B.1 Additional Moments and Pre-Government Income

Table B.1 shows the standardized moments implied by the estimates in Table 1. We denote

the i standardized moment of shock x ∈ {ε, η(s)} by αx
i , where α

x
i =

µx
i

µ
x/2
2

. Figure B.1 displays

age and year profiles of the standardized third and fourth moments, i.e., of the coefficients

of skewness and kurtosis, implied by the estimated theoretical moments for post-government

income and their empirical counterparts. Table B.2 shows moments of income changes in

the data and implied by the estimated income process.
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Table B.1: Estimation Results for Household Net Income—Standardized Moments

Standardized Moments
µχ
2 0.1076 αχ

3 −1.47 αχ
4 1.50

[0.0897; 0.1237] [−2.32;−0.78] [0.00; 5.38]

µε
2 0.0752 αε

3 −4.20 αε
4 40.62

[0.0677; 0.0816] [−4.79;−3.73] [36.27; 47.65]

µη,C
2 0.0223 αη,C

3 −4.95 αη,C
4 134.47

[0.0152; 0.0291] [−7.80;−2.18] [82.02; 191.34]

µη,E
2 0.0085 αη,E

3 −1.54 αη,E
4 134.47

[0.0044; 0.0153] [−7.97; 9.09] [82.02; 191.34]

Notes: Table shows standardized moments for household income after taxes and transfers implied by esti-
mates in Table 1. Brackets show 5th and 95th percentiles of 1,000 bootstrap estimates (998 of the bootstrap
iterations converge).

Figure B.1: Fit of Estimated Process for Household Net Income: Standardized Moments

(a) Skewness over Age (b) Kurtosis over Age

(c) Skewness over Time (d) Kurtosis over Time

Notes: Moments are cross-sectional standardized moments. For each moment, age and year profiles are
based on a regression of the moment on a set of age and year dummies. Blue lines: empirical moments; red
dashed lines: theoretical moments implied by point estimates; shaded area denotes a 90% confidence band
based on the bootstrap iterations.

Table B.3 shows estimated central moments for pre-government household income, and

table B.4 shows the implied standardized moments. Comparison to the estimates for post

government incomes shows that the estimated process captures intuitive features: the dis-

tributions of shocks to post-government income are more compressed in comparison to the
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Table B.2: Moments of Income Changes

m2 m3 m4

Data Estimated Data Estimated Data Estimated
∆1y 0.1366 0.1635 -0.0029 -0.0004 0.4006 0.4877
∆2y 0.1708 0.1762 -0.0047 -0.0006 0.4715 0.5145
∆3y 0.1935 0.1884 0.0030 -0.0003 0.5287 0.5392
∆4y 0.2146 0.2004 0.0005 0.0002 0.6223 0.5631
∆5y 0.2300 0.2096 0.0174 0.0036 0.7124 0.5758

Notes: Table shows the averages of second, third, and fourth central moments of 1–5 year income changes
in data, and implied by estimates.

Table B.3: Estimation Results for Household Pre-Government Income

Estimated Central Moments
ρ 0.9601

[0.9412; 0.9756]

µχ
2 0.1591 µχ

3 −0.1089 µχ
4 0.0607

[0.1361; 0.1786] [−0.1497;−0.0689] [0.0000; 0.1508]

µε
2 0.1045 µε

3 −0.1513 µε
4 0.4250

[0.0948; 0.1133] [−0.1621;−0.1373] [0.3630; 0.4867]

µη,C
2 0.0375 µη,C

3 −0.0340 µη,C
4 0.1359

[0.0263; 0.0477] [−0.0485;−0.0180] [0.0856; 0.1719]

µη,E
2 0.0152 µη,E

3 −0.0052 µη,E∗
4 0.0225

[0.0099; 0.0229] [−0.0136; 0.0029] [0.0089; 0.0488]

Notes: Estimated central moments for household income before taxes and transfers. Brackets show 5th and
95th percentiles of 1,000 bootstrap estimates. ∗µη,E

4 not separately estimated.

estimated shocks to pre-government income. As expected from this reduced dispersion, the

third central moments are smaller in magnitude for post-government income. The cyclical

pattern is qualitatively the same in that dispersion is countercyclical and skewness is pro-

cyclical. Estimates of the kurtosis reveal that the distribution of post-government income

shocks is more concentrated in the center, while some households experience shocks that

are more extreme relative to the overall more compressed (in comparison to pre-government

income) distribution.
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Table B.4: Estimation Results for Household Pre-Government Income—Standardized Mo-
ments

Standardized Moments
µχ
2 0.1591 αχ

3 −1.72 αχ
4 2.40

[0.1361; 0.1786] [−2.41;−1.15] [0.00; 5.39]

µε
2 0.1045 αε

3 −4.48 αε
4 38.94

[0.0948; 0.1133] [−5.05;−3.97] [34.52; 44.92]

µη,C
2 0.0375 αη,C

3 −4.69 αη,C
4 96.85

[0.0263; 0.0477] [−6.85;−2.69] [61.15; 141.97]

µη,E
2 0.0152 αη,E

3 −2.76 αη,E∗
4 96.85

[0.0099; 0.0229] [−6.97; 2.03] [61.15; 141.97]

Notes: Table shows standardized moments for household income before taxes and transfers implied by
estimates in Table B.3. Brackets show 5th and 95th percentiles of 1,000 bootstrap estimates.

B.2 Robustness Checks on Estimates

Table B.5 shows a set of robustness specifications for the estimation. The overall insight

is that the core parameters that go into our model analysis—the second to fourth central

moments of the transitory and persistent shocks—are robust to various alternatives. We now

explain the different robustness checks step-by-step in the order in which they are presented

in Table B.5. Column (0) repeats the parameters from the baseline specification (either the

estimates or the implied parameters in case of restrictions).

(1) joint: In the baseline specification, we estimate the sets of second, third, and fourth

central moments of shocks separately. In column joint we report instead the estimates

implied when estimating all parameters jointly. All parameters lie are quantitatively very

close to the baseline estimates, and all lie within the confidence bands.

(2)-(3) W ∆: In the baseline specification, we use a weight of 10% for the moments of

income changes. In the two columns W ∆5% and W ∆15%, we present estimates when

instead using either 5% or 15%, respectively. The estimates for the core parameters are not

significantly different.

(4) cyc ε: In the baseline specification, we do not allow the transitory shock distribution to

vary over the cycle. In alternative specification cyc ε, we remove this restriction. As expected,

the point estimates of moments of ε in the baseline specification lie in between the two

estimated state-specific moments. Importantly, the estimates of the persistent component

are unaffected by this different specification, in line with the fact that those moments are

identified from accumulated differences from contractions and expansions.
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(5) cyc α4: In the baseline specification, we do not allow the kurtosis of the persistent

shock to vary over the cycle. In alternative specification cyc α4, we remove this restriction.

Of course, estimates for second and third moments (the first two panels) are unaffected.

Turning to the fourth moments, as expected the transitory shock moments are unaffected,

while the (now unrestricted) estimates for the persistent component are not significantly

different from the baseline (restricted) specification.

(6) χ norm: In the baseline specification, we do not restrict the moments of the fixed

effect, χ. In the baseline, the confidence band is at the lower limit, and in two of the

preceding robustness checks, the point estimates are at the lower limit. In other words,

the moment is not precisely estimated. We thus consider a restricted estimation, in which

we do assume the third and fourth moments of a Normal distribution, i.e., we restrict the

skewness and third central moment of χ to zero, and the kurtosis to three. Importantly,

this restriction does not significantly affect the estimates of the core parameters (third and

fourth moments of transitory and persistent shocks).

(7)-(8) trend µ3: In the baseline specification, we introduce a linear trend into the third

central moment of the transitory shock,mε
3, and report the time-series average as the estimate

of mε
3. Reason for the introduction of this trend component is that the time-series displays a

trend, while the model we are estimating is stationary, and would thus, obviously, not stand

a good chance of matching the data moments. In two alternative specifications, we instead

control for the trend in the data by introducing either, (i.), a linear trend over cohorts into the

distribution of χ, or by introducing, (ii.), a linear trend over time in the persistent shocks.

In (i.), the reported µχ
3 is the implied raw average over cohorts. Importantly, this does

barely affect the estimated third moments of the transitory and persistent shocks. The third

moment of transitory shocks is almost identical. Similarly, the third moment of persistent

shocks in contractions is very close and not statistically different from baseline. The third

moment of persistent shocks in expansions, at 0.0080, is slightly above the confidence band

for the baseline, which goes until 0.0040. In (ii.), we add a linear trend to the persistent

component starting in 1977, the first year of our sample. The reported µη,C
3 and µη,E

3 show

the estimated moments net of the trend component. The estimates are almost identical to

the baseline. The additive trend component has an estimated slope of 0.0007. Again, the

transitory shocks are basically unaffected. The persistent shocks are estimated to be more

skewed to the left. The cyclical pattern is unaffected.
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(9) pers. ≥20: In the baseline specification, we assume that a cohort enters the labor

market at age 25, and then accumulates shocks. In this alternative specification, we instead

assume that a cohort enters at age 20 and accordingly the persistent component accumulates

from this earlier age on. For the oldest cohort in the sample (those aged 60 in the first wave),

this implies accumulation from 1937 on (instead of 1942). Based on NBER business cycle

dating, we classify year 1937 as contraction, and the other four years as expansions. We

estimate it on the same data moments as the baseline. Again, estimates are not significantly

affected. Note that the variance of χ, mχ
2 , is smaller because (together with mε

2) it now

captures variance at age 20 as opposed to age 25.

(10) hh dum: In the baseline specification, we control for the log of household size in the

first stage regression. In this alternative specification, we instead control for household size

by introducing dummies for household size, and then use the resulting residuals in the second

stage estimation of the income process. The estimates are virtually unchanged relative to

the baseline estimation.
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Table B.5: Estimation Results for Robustness Specifications
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Baseline Joint W ∆5% W ∆15% cyc ε cyc α4 χ norm. trend µχ
3 trend µη

3 bc ≥ 20 hh dum

ρ 0.9683 0.9780 0.9788 0.9576 0.9673 0.9683 0.9683 0.9683 0.9683 0.9649 0.9682
[0.9463; 0.9841]

µχ
2 0.1076 0.0755 0.1207 0.0954 0.1066 0.1076 0.1076 0.1076 0.1076 0.0295 0.1085

[0.0897; 0.1237]

µε,C
2 0.0752 0.0720 0.0786 0.0704 0.0565 0.0752 0.0752 0.0752 0.0752 0.0662 0.0755

[0.0677; 0.0816]

µε,E
2 0.0752 0.0720 0.0786 0.0704 0.0834 0.0752 0.0752 0.0752 0.0752 0.0662 0.0755

[0.0677; 0.0816]

µη,C
2 0.0223 0.0178 0.0183 0.0260 0.0248 0.0223 0.0223 0.0223 0.0223 0.0301 0.0222

[0.0152; 0.0291]

µη,E
2 0.0085 0.0103 0.0056 0.0124 0.0080 0.0085 0.0085 0.0085 0.0085 0.0146 0.0084

[0.0044; 0.0153]

µχ
3 −0.0508 −0.0577 −0.0491 −0.0561 −0.0513 −0.0508 0 −0.1163 −0.0830 −0.0378 −0.0504

[−0.0780;−0.0253]

µε,C
3 −0.0866 −0.0822 −0.0871 −0.0863 −0.0835 −0.0866 −0.0990 −0.0837 −0.0830 −0.0858 −0.0865

[−0.0935;−0.0771]

µε,E
3 −0.0866 −0.0822 −0.0871 −0.0864 −0.0880 −0.0866 −0.0990 −0.0837 −0.0830 −0.0858 −0.0865

[−0.0935;−0.0771]

µη,C
3 −0.0167 −0.0146 −0.0153 −0.0170 −0.0172 −0.0167 −0.0217 −0.0105 −0.0172 −0.0168 −0.0167

[−0.0266;−0.0062]

µη,E
3 −0.0013 0.0001 −0.0006 −0.0016 −0.0012 −0.0013 −0.0065 0.0080 −0.0062 −0.0030 −0.0014

[−0.0073; 0.0040]

µχ
4 0.0173 0.0579 0.0455 0.0000 0.0018 0.0000 0.0347 0.0173 0.0173 0.0000 0.0181

[0.0000; 0.0741]

µε,C
4 0.2300 0.2462 0.2399 0.2215 0.1249 0.2259 0.2326 0.2300 0.2300 0.2290 0.2300

[0.1927; 0.2664]

µε,E
4 0.2300 0.2462 0.2399 0.2215 0.2716 0.2259 0.2326 0.2300 0.2300 0.2290 0.2300

[0.1927; 0.2664]

µη,C
4 0.0666 0.0294 0.0510 0.0785 0.0823 0.0492 0.0602 0.0666 0.0666 0.0544 0.0667

[0.0363; 0.0847]

µη,E
4 0.0098 0.0098 0.0047 0.0179 0.0085 0.0222 0.0089 0.0098 0.0098 0.0129 0.0097

[0.0022; 0.0272]

Notes: Table shows estimated central moments for household income after taxes and transfers. Column 1
shows baseline estimates with 5th and 95th percentiles of bootstrap estimates in brackets. Other columns
show point estimates for different specifications.
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C Calibration Appendix

In this appendix we present details regarding the calibration of the exogenous income profile

and shock process. First, in Section C.1, we discuss the stochastic working life income

process in the two distribution scenarios from the main text, i.e., the full higher-order risk

scenario LKSW with leptokurtic and left-skewed shocks, and the reference scenario NORM

with Gaussian shocks. Alongside these two scenarios we also show the parameterization of an

alternative scenario LK. This is a counterfactual scenario which features leptokurtic shocks

that are symmetric in logs, i.e., they are not left-skewed. The quantitative results based

on LK are shown in appendix D.3. Second, in Section C.2, we discuss the pension system

which pins down the (non-stochastic) old-age income. Further, in Section C.3 we show the

asset to income ratio.

C.1 The Income Process

Discretization of the FGLD

We numerically solve for λ3 and λ4 jointly to fit the third and fourth central moments.2

Next, we determine λ2 to match the variance and λ1 to match the mean, both in closed

form. In the distribution NORM the parameter restriction on the FGLD is that λ3 = λ4.

For each Flexible Generalized Lambda Distribution (FGLD) our discretization procedure

is as follows:

1. Determine the endpoints of a grid Gx̃ from the quantile function of the FGLD for a

small probability π̃1 = ε such that

x̃1 = Q(π̃1)

x̃n = Q(1− π̃1).

2. Build grid Gx̃ by drawing n equidistant nodes on the interval [x̃1, x̃n].

3. For x̃i ∈ Gx̃, i = 1, n− 1 compute auxiliary gridpoint ¯̃xi =
x̃i+1+x̃i

2
.

4. On all ˜̃xi compute cumulative probability pi from the quantile function of the FGLD.

Since the quantile function of the FGLD maps ˜̃xi = Q(pi), this requires a numerical

solver to compute pi = Q−1(˜̃xi).

2Specifically, we solve the minimization problem minλ3,λ4

∑4
i=3 (µi(λ3, λ4)− µ̂i)

2
s.t. min{λ3, λ4} > − 1

4 ,
where µ̂i is the point estimate of the ith moment, and µi(·) denotes the central moment of the FGLD.
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5. Now assign to gridpoint x̃1 the probability π1 = p1 and to all gridpoints i, i = 2, . . . , n−
1, the probability πi = pi − pi−1 and to gridpoint x̃n the probability 1− pn−1.

Moments of the FGLD Distribution

Table C.1 summarizes the moments for distributions NORM, LK, and LKSW, and Table C.2

contains the corresponding parameters of λ of the fitted FGLD distributions. We choose

n = 41.

Table C.1: Moments in Three Distribution Scenarios

Moment µ̂2 µ̂3 µ̂4 µ̂2 µ̂3 µ̂4 µ̂2 µ̂3 µ̂4

NORM LK LKSW
Transitory Shock:

target 0.050 0 0.008 0.050 0 0.219 0.050 -0.047 0.102
fitted 0.050 0 0.008 0.050 0 0.219 0.050 -0.047 0.102
discrete 0.050 0 0.008 0.050 0 0.219 0.051 -0.051 0.107

Persistent Shock—Contraction:
target 0.022 0 0.001 0.022 0 0.061 0.022 -0.017 0.066
fitted 0.022 0 0.001 0.022 0 0.061 0.022 -0.016 0.066
discrete 0.022 0 0.001 0.022 0 0.061 0.023 -0.020 0.070

Persistent Shock—Expansion:
target 0.009 0 0 0.009 0 0.008 0.009 -0.001 0.01
fitted 0.009 0 0 0.009 0 0.008 0.009 -0.001 0.01
discrete 0.009 0 0 0.009 0 0.008 0.009 -0.002 0.01

Notes: Table shows the target central moment together with the central moment of the fitted FGLD, and

of the discretized FGLD for three distribution scenarios.
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Table C.2: Fitted Parameters of FGLD

Parameter λ̂1 λ̂2 λ̂3 λ̂4

NORM
Transitory: 1.000 0.359 5.203 5.203
Persistent—Contraction: 1.000 0.539 5.203 5.203
Persistent—Expansion: 1.000 0.871 5.203 5.203

LK
Transitory: 1.000 0.002 173.309 173.309
Persistent—Contraction: 1.000 0.002 244.954 244.954
Persistent—Expansion: 1.000 0.003 220.344 220.344

LKSW
Transitory: 0.197 0.008 92.959 57.755
Persistent—Contraction: 0.425 0.002 289.898 225.714
Persistent—Expansion: 0.894 0.003 275.612 256.735

Notes: This table shows the estimated λ-values for the fitted FGLD for distributions NORM, LK and

LKSW, cf. Section 4.1.

Moments of the Earnings Process

Table C.3 shows cross-sectional central moments of the earnings distribution in logs and

levels at labor market entry (age 25) and exit (age 60). We observe that all distributions

are skewed to the right in levels and that, despite left-skewness in logs, right skewness of

distribution LKSW is higher in levels than of distribution NORM. Furthermore, the variance

is initially lower in distribution LKSW than in distribution NORM.3 Both features constitute

a source of welfare gains from higher-order income risk, whereas the higher kurtosis in levels

and the increasing variance work against it. Finally, skewness and in particular kurtosis in

levels under (counterfactual) distribution LK are extremely high. Left-skewness in logs in

distribution LKSW substantially reduces both moments.

Figures C.1 and C.2 summarize the calibration of the earnings process during the work-

ing period and the pension income in retirement for central moments 1-4 of the earnings

distribution in levels and logs, respectively.

3By construction, the variance of the log earnings distribution is the same across distribution scenarios.
The difference of 0.01 showing up at age 60 is due to numerical inaccuracies of coarse grids for assets a and
the persistent income state z.
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Table C.3: Moments of the Earnings Distribution in Logs and Levels

Logs Levels
Age 25 (j = 0)

NORM LK LKSW NORM LK LKSW
µ2 0.06 0.06 0.06 0.06 0.36 0.05
µ3 0 0 -0.06 0.01 4.44 0.09
µ4 0.01 0.24 0.13 0.01 129.43 0.41

Age 60 (j = 35)
µ2 0.23 0.24 0.24 0.25 0.86 0.3
µ3 0 0 -0.12 0.21 27.52 1.12
µ4 0.15 0.56 0.47 0.5 27889.82 27.85

Notes: Moments of cross-sectional distribution of log earnings and earnings at ages 25 (j = 0) and 60

(j = 35) for each scenario of shock distributions. NORM: FGLD with moments of the normal distribution,

LK: FGLD with excess kurtosis, LKSW: FGLD with excess kurtosis and left-skewness (in logs).

Figure C.1: Moments of Life-Cycle Earnings by Age: Logs

(a) Mean of Logs (b) Variance of Logs

(c) Third Central Moment of Logs (d) Fourth Central Moment of Logs

Notes: Figures show moments of cross-sectional distribution of log earnings over the life-cycle for each
scenario of shock distributions. NORM: FGLD with moments of the normal distribution, LKSW: FGLD
with excess kurtosis and left-skewness (in logs).
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Figure C.2: Moments of Life-Cycle Earnings by Age: Levels

(a) Mean (b) Variance

(c) Third Central Moment (d) Fourth Central Moment

Notes: Figures show moments of cross-sectional distribution of earnings over the life-cycle for each scenario
of shock distributions. NORM: FGLD with moments of the normal distribution, LKSW: FGLD with excess
kurtosis and left-skewness (in logs).

17



C.2 The Pension System

Approximating the AIME with the last income state before entering into retirement zjr−1

the primary insurance amount according to the bend point formula is determined as follows:

p(zjr−1) =



s1zjr−1 for zjr−1 < b1

s1b1 + s2 (zjr−1 − b1) for b1 ≤ zjr−1 < b2

s1b1 + s2 (b2 − b1) + s3 (zhr−1 − b2) for b2 ≤ zjr−1 < b3

s1b1 + s2 (b2 − b1) + s3 (b3 − b2) for zjr−1 ≥ b3

We compute the average contribution rate from the data giving τ p = 11.7% (which is close

to the current legislation featuring a marginal contribution rate of τ p = 12.4%). The base

for pension contributions in our model is average gross earnings. Since earnings processes in

the model are based on net wages—net of all taxes and transfers—and since we normalize

average net wages to one, average gross wages are 1
1−τp−τ

, where τ is some average labor

income tax rate (including transfers). We compute τ from the data giving τ = 16.88%.

Since average labor productivity, the means of the stochastic components zj and ϵj, as

well as the total population in age group j are all normalized to one, efficiency weighted

aggregate labor in the economy is equal to jr − 1. The measure of pensioners is J − jr + 1.

The pension budget is therefore given by

τ p · 1

1− τ − τ p
· (jr − 1) = ϱ ·

∫
p(zjr−1)dΦ(zjr−1) · (J − jr + 1) .

Table C.4 contains the calibrated values of the pension indexation factor ϱ, which is

required to clear the budget of the pension system.

Table C.4: Pension Indexation Factor ϱ

CR NCR
NORM 0.6817 0.6692
LK 0.7007 0.6787
LKSW 0.6866 0.6758

Notes: Calibrated pension benefit level ϱ under a balanced budget. CR: cyclical risk, NCR: no cyclical risk.
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C.3 Asset Profile

Figure C.3 shows the profile of the asset to income ratio over the working life obtained from

our PSID sample (the black solid line in both panels). Panels (a) and (b) show the corre-

sponding model profiles under two distribution scenarios in the baseline and KV calibrations,

respectively. In panel (a), the blue dashed line corresponds to scenario LKSW, where the

discount rate is chosen to match the life cycle profile given θ. The aggregate asset to income

ratio obtained in the calibration is 5.4. The red line shows the profile under scenario NORM

(given the LKSW calibration of model parameters). In panel (b), the blue dashed line again

shows the profile under scenario LKSW, where in the KV calibration the discount rate is

chosen to match an aggregate asset-to-income ratio of 2.5. Again, the red line shows the

corresponding profile in scenario NORM (given the LKSW calibration of model parameters).

We show the model profiles for θ = 4; the other ones are virtually the same.

Figure C.3: Asset to Income Ratio over the Life Cycle

(a) Baseline (b) KV calibration

Notes: Shows empirical asset to income ratio over the working life together with the corresponding model

profiles implied under the two scenarios LKSW and NORM for the baseline calibration (panel (a)) and the

KV calibration (panel (b)) for θ = 4.

D Additional Quantitative Results

D.1 Comparison of FGLD with Normal Distribution

In the application in the main text, we compare the FGLD distribution with left skewness

and excess kurtosis (LKSW) to the FGLD with zero skewness and kurtosis of three (NORM).

Figure D.1 shows the distribution against the Normal distribution using Gaussian quadra-
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ture. The second to fourth central (and standardized) moments of the two distributions are

the same—the visual differences are captured by the even moments of higher order. It turns

out that these higher-order differences are quantitatively irrelevant in our application: Ta-

ble D.1 documents the CEV under distribution scenario NORM in comparison to one where

shocks are drawn from a Normal distribution. Thus, for the preferences used the differences

of moments are not crucial in the calibrated version of the model, and therefore we choose

the FGLD distribution NORM as the benchmark.

Figure D.1: Discretized Log Distribution Functions: Persistent Shock

(a) NORM (b) Normal

Notes: Discretized log distribution functions for the persistent shock η. NORM: FGLD with estimated

variance, zero skewness, and kurtosis of three. Markers denote the grid points used in the discretized

distribution. Normal: Normal distribution with estimated variance discretized using Gaussian quadrature

method. Log density is the base 10 logarithm of the PDF.
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Table D.1: Welfare Effects of Cyclical Idiosyncratic Risk: FGLD(NORM) versus Normal
Distribution

gc gmean
c glcdc gcsdc

Risk Aversion, θ = 1
NORM: cyclical risk -1.918 0.36 -2.142 -0.136
NORMAL: cyclical risk -1.920 0.36 -2.144 -0.136

Risk Aversion, θ = 2
NORM: cyclical risk -3.622 0.651 -3.998 -0.274
NORMAL: cyclical risk -3.628 0.651 -4.003 -0.276

Risk Aversion, θ = 3
NORM: cyclical risk -5.106 0.894 -5.594 -0.406
NORMAL: cyclical risk -5.116 0.895 -5.602 -0.409

Risk Aversion, θ = 4
NORM: cyclical risk -6.373 1.108 -6.961 -0.520
NORMAL: cyclical risk -6.386 1.109 -6.970 -0.525

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk expressed
as consumption equivalent variation (CEV) in percentages for FGLD distribution NORM and the normal
distribution, NORMAL. gc: total CEV, gmean

c : CEV from changes of mean consumption, glcdc : CEV from
changes in the distribution of consumption over the life-cycle, gcsdc : CEV from changes in the cross-sectional
distribution of consumption, where gc = gmean

c + glcdc + gcsdc .

D.2 Separating the Role of Kurtosis

Tables D.2 and D.3 provide additional insights on the roles of the different components, i.e.,

here the excess kurtosis in isolation, of higher-order risk for the high risk aversion calibration

with θ = 4. Welfare costs of cyclical risk are about 4.9 percentage points higher in this

distribution scenario than in scenario NORM. Table D.3 shows the pass-through and its

decompostion under scenario LK.
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Table D.2: The Welfare Effects of Cyclical Idiosyncratic Risk for Distribution Scenario LK

gc gmean
c glcdc gcsdc ∆gc

Risk Aversion, θ = 1
NORM→LK -1.145 0.260 -1.302 -0.103 -
LK: cyclical risk -2.218 0.414 -2.454 -0.178 -0.300

Risk Aversion, θ = 2
NORM→LK -1.733 0.294 -1.858 -0.169 -
LK: cyclical risk -3.992 0.662 -4.318 -0.336 -0.37

Risk Aversion, θ = 3
NORM→LK -4.438 0.478 -4.509 -0.407 -
LK: cyclical risk -6.797 0.949 -7.152 -0.595 -1.691

Risk Aversion, θ = 4
NORM→LK -10.909 0.925 -10.787 -1.047 -
LK: cyclical risk -11.258 1.293 -11.496 -1.055 -4.885

Notes: Welfare gains (positive numbers) and losses (negative numbers) of cyclical idiosyncratic risk ex-
pressed as Consumption Equivalent Variation (CEV) in percentages in the non-cyclical scenario that makes
households indifferent to the cyclical scenario. Displayed for scenario LK. gc: total CEV, gmean

c : CEV from
changes of mean consumption, glcdc : CEV from changes in the distribution of consumption over the life-cycle,
gcsdc : CEV from changes in the cross-sectional distribution of consumption, where gc = gmean

c + glcdc + gcsdc .
∆gc = gLK

c − gNORM
c : difference in percentage points relative to scenario NORM.

Table D.3: Aggregate Pass-Through and its Decomposition for Scenario LK, θ = 4

components of 1− ϕ: conditional 1− ϕ:

Transitory: 1− ϕε π−Aε

1−ϕε
π+Bε

1−ϕε
Cε

1−ϕε 1− ϕε|ε− 1− ϕε|ε+

LK 0.086 -0.029 0.886 0.143 0.027 0.172

Persistent: 1− ϕη π−Aη

1−ϕη
π+Bη

1−ϕη
Cη

1−ϕη 1− ϕη |η− 1− ϕη |η+

LK 0.438 0.381 0.596 0.023 0.368 0.539

Notes: Column 1 shows the aggregate consumption pass-through coefficient, columns 2-4 its decomposition
into components according to equation (17), expressed as shares of total pass-through. π− and π+ are short
for the probabilities of the shock being negative or positive. Columns 5 and 6 show conditional pass-through
coefficients for negative and positive shocks.

D.3 Sensitivity Analyses

Calibration of θ. In Section 4.4 we report the analysis of the insurance coefficient for

the benchmark calibration of θ = 4. Results for other calibrations of θ turn out to deliver

quantitatively virtually the same results. In Table D.4, we report the aggregate pass-through

to consumption of transitory and persistent shocks, and the decomposition into the relative

importance of positive and negative shocks for θ = 2.
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Table D.4: Aggregate Pass-Through and its Decomposition, θ = 2

components of 1− ϕ: conditional 1− ϕ:

Transitory: 1− ϕε π−Aε

1−ϕε
π+Bε

1−ϕε
Cε

1−ϕε 1− ϕε|ε− 1− ϕε|ε+

NORM 0.046 -0.07 0.925 0.145 0.037 0.057
LKSW 0.035 0.322 0.524 0.154 0.023 0.074
Persistent: 1− ϕη π−Aη π+Bη Cη

1− ϕη |η− 1− ϕη |η+

NORM 0.455 0.411 0.574 0.015 0.472 0.500
LKSW 0.426 0.540 0.444 0.015 0.374 0.537

Notes: Column 1 shows the aggregate consumption pass-through coefficient, columns 2-4 its decomposition
into components according to equation (17), expressed as shares of total pass-through. π− and π+ are short
for the probabilities of the shock being negative or positive. Columns 5 and 6 show conditional pass-through
coefficients for negative and positive shocks.

Alternative Calibrations. Turning to more substantial calibration differences, we start

out with the baseline calibration and vary it to consider, first, an expected utility formulation

with CRRA preferences where we restrict θ = 1
γ
, second, we give households zero initial

assets, and third, we recalibrate the discount rate under scenario NORM. We then start out

with the KV calibration and vary it by giving households (positive) average assets at the

start of the life-cycle as under the baseline. Table D.5 summarizes the results.

CRRA Utility. Assuming CRRA preferences with θ = 1
γ
we conduct experiments for θ ∈

{2, 3, 4}, since for θ = 1 results are of course as before. As in our previous baseline

analysis, we recalibrate discount rate ρ for each value of θ. For θ ∈ {2, 3, 4} we ob-

tain ρ ∈ {0.0093, 0.0025,−0.0005} and thus, in contrast to our experiments with EZW

utility, the calibrated discount rate is decreasing in θ. For stronger risk attitudes θ the

precautionary savings motive is stronger, while the simultaneous lower IES γ = 1
θ
implies

smaller life-cycle savings. The second effect turns out to dominate so that calibration calls

for less impatience in order to deliver the same asset profile and the calibrated discount rate

even turns negative for θ = 4.

Column 2 of Table D.5 summarizes the results on the welfare effects of cyclical idiosyn-

cratic risk for this alternative choice of preferences. In comparison to Table 3 we observe

a lower increase of welfare losses from cyclical idiosyncratic risk for stronger risk attitudes

(lower IES). Likewise, our difference in difference comparison to scenario NORM shows that

higher-order income risk still substantially matters for the welfare costs of cyclical idiosyn-

cratic risk, but less than with EZW preferences. The reason is that with a lower IES the

overall consumption profile is smoother and thus reacts less to changes in risk. Thus, the

simultaneous reduction of the IES when relative risk attitudes are strengthened confounds
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Table D.5: Welfare Analysis: Sensitivity Analyses

Baseline CRRA ASS=0 RECAL KV KV,ASS>0
Risk Aversion, θ = 1

NORM→LKSW 0.384 -0.629 -0.629 - -0.328 0.058
NORM: cyclical risk -1.918 -1.918 -2.029 -1.920 -1.506 -2.153
LKSW: cyclical risk -1.620 -1.620 -1.780 -1.620 -1.562 -1.979

Risk Aversion, θ = 2
NORM→LKSW -0.086 -2.547 -2.547 - -4.008 -2.628
NORM: cyclical risk -3.622 -2.863 -3.858 -3.626 -2.472 -3.961
LKSW: cyclical risk -3.943 -2.902 -4.663 -3.943 -4.397 -5.289

Risk Aversion, θ = 3
NORM→LKSW -2.183 -10.185 -10.185 - -13.537 -10.846
NORM: cyclical risk -5.106 -3.754 -5.459 -5.095 -2.949 -5.143
LKSW: cyclical risk -8.128 -5.108 -10.617 -8.128 -10.479 -10.466

Risk Aversion, θ = 4
NORM→LKSW -6.976 -24.265 -24.265 - -25.553 -21.028
NORM: cyclical risk -6.373 -4.594 -6.800 -6.322 -3.081 -5.480
LKSW: cyclical risk -13.976 -8.843 -19.232 -13.976 -16.958 -14.881

Notes: Welfare gains (positive numbers) and losses (negative numbers) of higher-order income risk, expressed
as a Consumption Equivalent Variation (CEV) in percentages in scenario NORM that makes households in-
different to the higher-order income risk scenario LKSW. Also: Consumption Equivalent Variation in the
non-cyclical scenario that makes households indifferent to the cyclical scenario. CRRA: CRRA utility;
ASS=0: zero initial assets; RECAL: recalibration of discount rate in scenario NORM; GE: general equilib-
rium; KV: target aggregate capital/income ratio + zero initial assets; KV,ASS>0: KV with positive initial
assets.

the welfare analysis.

Decomposing Baseline vs. KV-Calibration. In our baseline calibration households

start their economic life with positive assets and calibrated impatience is relatively strong.

As a consequence, very few households are borrowing constrained (numerically, the fraction

is basically zero in all scenarios). We now investigate the sensitivity of our results with regard

to the role of the borrowing constraint by setting initial assets to 0. In this experiment, we

do not recalibrate because we aim at disentangling the role of the constraint.

Zero initial assets imply that the fraction of borrowing constrained hand-to-mouth con-

sumers increases. For θ = 1, initially roughly 3% of households are constrained in sce-

nario NORM and 2.4% in scenario LKSW. Column 3 of Table D.5 shows that this leads to

higher overall welfare losses from cyclical idiosyncratic risk and an increasing importance of

higher-order risk. For θ = 4 the difference in the CEV between scenarios LKSW and NORM

is about −12.4 percentage points, compared to −7.6 percentage points under the baseline
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calibration. Thus, a larger fraction of households at the borrowing constraint increases the

role played by higher-order income risk for the welfare losses from cyclical idiosyncratic risk.

This explains part of the difference between the baseline calibration and the alternative KV

calibration.

Starting from the other end, i.e., from the KV-calibration where ρ > r, column 6 reports

the CEV of cyclical idiosyncratic risk if households start with positive assets. The difference

between LKSW and NORM is about 9.4 percentage points compared to 13.9 percentage

points under the KV-calibration. Combining the two steps of the decomposition, zero versus

positive initial assets are quantitatively somewhat more relevant for the difference between

the welfare costs of cyclical risk under the two alternative calibrations.

Figure D.2 shows the mean consumption profile in the KV calibration and compares it

to the one from the baseline calibration.

Figure D.2: Age Profile of Consumption: Baseline vs. KV-Calibration (θ = 4)

(a) Baseline (b) KV-Calibration

Notes: Shows life cycle profile of average log consumption under alternative calibrations.

Recalibration under scenario NORM. Column 4 reports results under the baseline

calibration, where for scenario NORM, we recalibrate the discount rate. Thus, we give

the model with Normal shocks its best chance to match the asset profile. Comparing the

CEVs under the baseline calibration with the ones for the recalibrated discount rates for the

different values of θ reveals that this recalibration is numerically almost irrelevant.
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